Correlation of morphological patterns of nucleoli in alveolar macrophages with HLA-DR antigen expression in sarcoidosis

W Popp, F J Wachtler

Abstract
Background Alveolar macrophages from patients with sarcoidosis express increased quantities of HLA-DR during activation. Because silver staining has been described as a sensitive indicator of cellular activity a study was performed to examine whether it relates to HLA-DR antigen expression.

Methods The relation between silver staining patterns of nucleoli and HLA-DR antigen expression was examined in alveolar macrophages collected by bronchoalveolar lavage from 11 patients with pulmonary sarcoidosis and 11 control subjects.

Results The mean (SD) number of silver stained protein dots associated with the nucleolar organiser regions (AgNORs) was significantly higher in alveolar macrophages from patients with sarcoidosis (7.5 ± 1.5) than in those from control subjects (5.2 ± 0.6). The number of silver stained dots in alveolar macrophages correlated significantly with the intensity and the density of HLA-DR antigen expression in the patients with sarcoidosis.

Conclusion Silver staining may be a sensitive tool for the investigation of the biological cell activity of alveolar macrophages in sarcoidosis.

Silver staining of nucleoli was first reported in 1899.¹ A local and functional relation was found between certain chromosomes and nucleoli;² the regions thus identified have been called nucleolar organiser regions (NORs).³ ⁴ These are regions of acrocentric chromosomes containing major ribosomal RNA (rRNA) genes and NOR associated proteins, which result from transcription⁵ ⁶ ⁷ and can be seen with silver staining. Previous studies have related the amount and distribution of NOR associated silver stained proteins with cellular activity in vitro⁸ ⁹ ¹¹ and in vivo.¹² ¹³ ¹⁴ The silver stained dots are usually called AgNORs, and should not be confused with the number of transcriptionally active NORs in the cell. Wide discrepancies have been observed between the number of silver stained dots and the number of NOR chromosome genomes.¹⁰ ¹⁷ ¹⁸ In many studies silver staining has been found to be helpful in the diagnosis of malignancy and as a sensitive indicator of cellular activity.⁹ ¹⁰ ¹¹ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁷ ¹⁸

Alveolar macrophages in patients with sarcoidosis are described as being highly activated and are concerned in an active immunological process.¹⁹ ²⁰ ²¹ They have been shown to express increased quantities of HLA-DR antigen during activation. The fact that silver staining is also a sensitive marker of cellular activation prompts the question of whether silver staining is correlated with HLA-DR expression, an immunological feature of activated alveolar macrophages. The object of our investigation was to compare silver staining and HLA-DR expression in alveolar macrophages obtained by bronchoalveolar lavage from patients with sarcoidosis and from healthy control subjects.

Methods

SUBJECTS
We studied 11 patients with pulmonary sarcoidosis (confirmed by transbronchial lung biopsy) and 11 healthy control subjects. Consecutive patients with sarcoidosis seen in the pulmonary unit were included provided that they had not been treated and were non-smokers at the time of the investigation; two patients were ex-smokers who had smoked less than 10 cigarettes a day and stopped at least two years before the investigation. The control subjects were healthy non-smokers, three of whom had smoked less than 10 cigarettes a day but had stopped at least three years before the investigation. The diagnosis of sarcoidosis was confirmed by transbronchial lung biopsy.

BRONCHOALVEOLAR LAVAGE
All subjects underwent bronchoalveolar lavage,³ which was performed with a fibreoptic bronchoscope (Olympus B10) after local anaesthesia with 2% xylocaine. One hundred millilitres of isotonic warmed saline were instilled into the middle lobe in 20 ml aliquots and recovered by gentle aspiration. The fluid was collected into siliconised glass tubes and processed immediately at 4°C.

HLA-DR ANALYSIS
Cells were counted in a haemocytometer. Cytocentrifuge cell preparations were made for May-Grunwald-Giemsa and silver staining. Differential cell counts were performed on 400 cells and individual counts were given as per-
SILVER STAINING AND NUCLEOLAR MORPHOLOGY

After the slides had been fixed in phosphate buffered formalin silver staining was done with freshly prepared reagent: 2 g gelatin dissolved in a 1% aqueous solution of formic acid was mixed with a 50% aqueous solution of silver nitrate in a proportion of 1:2.29 The cytocentrifuge cell preparations were incubated in this reagent for 30 minutes at room temperature under dark room conditions. The slides were then washed thoroughly with deionised water, dehydrated in xylene, and mounted in Entellan. The number of silver stained dots (AgNORs) per nucleus was determined for each subject from 400 alveolar macrophages without knowledge of the diagnosis.

RESULTS
Details of the subjects and the results are shown in table 1. Patients with pulmonary sarcoidosis had higher total cell counts, lower percentages of alveolar macrophages, and higher percentages of lymphocytes. The proportion of HLA-DR positive alveolar macrophages was above 90% in both groups. The intensity of immunofluorescent staining of HLA-DR antigen varied considerably but was significantly higher in the patients with sarcoidosis. The number of AgNORs within the nuclei of alveolar macrophages was significantly higher in the patients with sarcoidosis than in the control subjects (figure). There was a significant positive correlation between the number of AgNORs and both the intensity of immunofluorescent staining of HLA-DR antigen and the density of HLA-DR antigen expression on alveolar macrophages in the patients with sarcoidosis (table 2). The trend was in the same direction in control subjects but was not significant. The number of AgNORs did not correlate with the percentages of DR positive alveolar macrophages, total cell size, or nuclear size.

DISCUSSION
Silver staining of alveolar macrophages

Table 1 Data on the subjects and results of analysis of bronchoalveolar cells (mean / SD values)*

<table>
<thead>
<tr>
<th></th>
<th>Sarcoidosis (n = 11)</th>
<th>Controls (n = 11)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>47·5 (8·2)</td>
<td>45·6 (9·9)</td>
<td></td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>2/9</td>
<td>2/9</td>
<td></td>
</tr>
<tr>
<td>Chest radiograph stage†</td>
<td>I</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Respiratory values (% pred)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>87·9 (19·9)</td>
<td>97·6 (11·7)</td>
<td>NS</td>
</tr>
<tr>
<td>FEV 1</td>
<td>82·9 (17·0)</td>
<td>95·5 (13·4)</td>
<td>NS</td>
</tr>
<tr>
<td>TLC</td>
<td>100·5 (15·1)</td>
<td>110·8 (8·3)</td>
<td><0·05</td>
</tr>
<tr>
<td>TLCO</td>
<td>78·2 (12·1)</td>
<td>96·2 (13·5)</td>
<td><0·05</td>
</tr>
<tr>
<td>TLCO/VA</td>
<td>73·4 (11·1)</td>
<td>96·3 (14·5)</td>
<td><0·01</td>
</tr>
<tr>
<td>ACE (U/ml)</td>
<td>23·8 (8·6)</td>
<td>13·0 (4·3)</td>
<td><0·05</td>
</tr>
<tr>
<td>Lavage fluid total cell count (× 10⁶)</td>
<td>16·9 (9·4)</td>
<td>10·1 (2·5)</td>
<td><0·05</td>
</tr>
<tr>
<td>Differential count (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alveolar macrophages</td>
<td>52·6 (23·9)</td>
<td>88·9 (7·2)</td>
<td><0·05</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>45·0 (25·7)</td>
<td>8·6 (7·2)</td>
<td><0·05</td>
</tr>
<tr>
<td>Neutrophil granulocytes</td>
<td>2·0 (2·6)</td>
<td>1·0 (1·0)</td>
<td>NS</td>
</tr>
<tr>
<td>Eosinophil granulocytes</td>
<td>0·4 (0·4)</td>
<td>0·4 (0·7)</td>
<td>NS</td>
</tr>
<tr>
<td>Alveolar macrophages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% HLA-DR positive</td>
<td>97·8 (12·5)</td>
<td>96·5 (2·5)</td>
<td>NS</td>
</tr>
<tr>
<td>Cell diameter (µm)</td>
<td>24·5 (16·0)</td>
<td>23·3 (13·3)</td>
<td>NS</td>
</tr>
<tr>
<td>Nuclear diameter (µm)</td>
<td>9·0 (0·0)</td>
<td>9·1 (0·4)</td>
<td>NS</td>
</tr>
<tr>
<td>No of IF units</td>
<td>183·6 (42·0)</td>
<td>122·0 (29·9)</td>
<td><0·05</td>
</tr>
<tr>
<td>Density of IF units</td>
<td>0·0972 (0·0191)</td>
<td>0·0730 (0·0212)</td>
<td><0·05</td>
</tr>
<tr>
<td>No of silver positive dots/nucleus</td>
<td>7·5 (1·5)</td>
<td>5·6 (0·6)</td>
<td><0·01</td>
</tr>
</tbody>
</table>

* Differences between the sarcoidosis group and the control group analysed by the Kolmogoroff-Smirnoff test.
† Sarcoidosis stage: I—bilateral hilar lymphadenopathy; II—I + infiltrates; III—lung fibrosis.

Left: Alveolar macrophages collected from a patient with sarcoidosis obtained by bronchoalveolar lavage showing several silver stained dots within the nucleus.

Right: Alveolar macrophages from a control subject showing only a few silver stained dots within the nucleus.

Correlation of morphological patterns of nuclei in alveolar macrophages with HLA-DR antigen expression in sarcoidosis

879

This content is a screenshot of a page from a document, containing a table with data on the subjects and results of analysis of bronchoalveolar cells, and some discussion about the correlation of morphological patterns of nuclei in alveolar macrophages with HLA-DR antigen expression in sarcoidosis. The table includes columns for different parameters such as age, sex, chest radiograph stage, and various cell counts and measurements, along with statistical significance values (p). The discussion points to significant differences between the sarcoidosis group and controls, emphasizing the correlation with HLA-DR antigen expression.

23 The positive correlation between the number of AgNORs per cell nucleus and HLA-DR antigen expression in alveolar macrophages in sarcoidosis probably indicates increased metabolic cell activity.

Correlation of morphological patterns of nucleoli in alveolar macrophages with HLA-DR antigen expression in sarcoidosis.

W Popp and F J Wachtler

Thorax 1991 46: 878-880
doi: 10.1136/thx.46.12.878

Updated information and services can be found at:
http://thorax.bmj.com/content/46/12/878

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/