LETTERS TO THE EDITOR

Endoscopic palliation of tracheobronchial malignancies

I read with interest the review by Drs M R Hetzel and S G T Smith (May 1991;46:325-33). I think that cryotherapy is almost unknown in England, and used in only one centre.1

There are some errors regarding cryotherapy. The bronchial probes now use nitrous oxide and not liquid nitrogen. The temperature obtained on the tip of the probe reaches -70° (or -80°C) but the tumour or tissues are frozen at -40°C. No cases of perforation have been reported with this technique. Flexible probes were not described by Sanderson;2 he used rigid cryo-surgery probes (and this was the first to use flexible probes in 1985). The authors say that no comparative studies of laser treatment and cryotherapy have been published but there is one study in a French journal,3 and others.4,5

This technique is well known in France and used more widely than laser therapy. There are at the moment 75 cryotherapists and 1500-2000 patients have been treated.

1 Hetzel JP. Thoracic Centre Hospitalier, 24 rue Albert Thuret, 94669 Chessilly-Laruns, France

Pulmonary function in chronic renal failure: effect of dialysis and transplantation

We read with interest the pulmonary function data compiled by Drs A Bush and R Gabriel for patients with renal transplants and patients with chronic renal failure (June 1991;46:424-8). The authors’ proposal that lung function change in the groups with chronic renal failure resulted from pulmonary oedema would be consistent with the published data on patients with chronic congestive cardiac failure. For example, Wright et al have described diffusion impairment in 31% of patients awaiting heart transplantation and as many as 67% of their patients have diffusion abnormalities if those who also have restrictive and obstructive change are included.6

The suggestion of a reduction in carbon monoxide transfer factor (TLCo) in patients with renal transplants is not new. Reduced TLCo has been described in recipients of cadaveric renal allografts during active cytomegalovirus infection, who were compared with 12 control patients with renal transplants.7 It has been suggested that there is a causal relation between complement activation and the TLCo change in these patients with cytomegalovirus infection. Do Drs Bush and Gabriel have information on whether their patients with renal transplants were infected with cytomegalovirus?

JIM EGAN
Sanjay KEE RA
ASHLEY WOODCOCK
North West Lung Centre,
University of Manchester, Wythenshawe Hospital, Manchester M23 9LT


AUTHOR’S REPLY

As we acknowledged, a reduction in carbon monoxide transfer factor following successful cadaveric renal transplantation has been described before8 and has been related to opportunistic infection.9,10 Both these groups studied patients less than 3 months after transplantation. The new findings in our study were the reduction in carbon monoxide transfer factor and residual volume in well patients many years after transplantation. Of the seven patients studied, four had a low residual volume, all had a low TLCo, and four had a low TLCo per litre of accessible lung volume (defined as below 85% predicted in all cases). Unfortunately, we do not have the detailed information on cytomegalovirus status recorded by van Son et al11, nor could we relate the changes to number or type of overt infective episodes after transplantation. Ours was a cross sectional study; a longitudinal study, with detailed microbiological assessment, is needed to address the relation of opportunistic infection to changes in lung function.

ANDREW BUSH
Royal Brompton National Heart and Lung Hospital, London SW3 6NP


Silenosis in a Himalayan village population: role of environmental dust

We read with interest the paper by Dr T Norboo and others (May 1991;46:341-3), which reports for the first time progressive massive fibrosis of the lung, in two patients, as a result of environmental dust exposure. One patient was a woman farmer; the sex and occupation of the other two patients were not given. Environmental silica, unlike occupational silica, was thought until recently to be free of fibrinogenic activity. We have seen a Saudi bedouin woman who developed progressive massive fibrosis (conglomerate fibrosis over 1 cm seen on computed tomogram) as a complication of desert lung.1 As this occurred in a woman and has not been reported in men (who have the same exposure and smoking review to date), we believe that occupation could have played a part. Our patient was regularly engaged in household chores, such as grain grinding and floor


Downloaded from http://thorax.bmj.com/ on January 6, 2018 - Published by group.bmj.com
sweeping, in the enclosed atmosphere of a hut and tent. These activities have been considered to be responsible for the fact that desert lung is predominantly a disease of women. It would be interesting to know whether the woman farmer with massive fibrosis in the paper by Dr Norboo and others had performed any of these traditional chores. Furthermore, being a farmer, had she engaged in ploughing, or earth or well digging, occupations which generate considerable dust exposure during the dry season? Are we truly dealing with progressive massive fibrosis of purely environmental origin?

FA AL KASSIMI
SA AL MAJED
MS AL HAJJAJ
Medical Department
NED HAWASS
Radiology Department
College of Medicine, King Saud University,
PO Box 2925, Riyadh 11461,
Saudi Arabia

BOOK NOTICE


Physical exercise in patients with lung disease is important for two reasons. It provides a cardiopulmonary stress that can be used to identify abnormality and define disability. It can also be used through a training programme to improve physical performance. The inclusion of a volume on exercise physiology in this famous series is a welcome but tardy addition. The format is familiar, with editors of international standing and individual chapters written by acknowledged experts on the subject. The text is not, by the editors’ admission, comprehensive and does exclude detailed discussion of some subjects, particularly methodology, training, and nutrition. Lung mechanics, gas exchange, and the control of breathing among others are, however, thoroughly explored. All the chapters are written with authority and some with great clarity, but a few chapters suffer from mathematical inaccessibility. There is excellent mutuality of subjects and little repetition, which is a tribute to the editors’ skill. Although there is some discussion of pathophysiology, the emphasis of the book lies in the exploration of the exercise phenomenon. Consequently, only those respiratory physicians with a serious interest in exercise physiology will benefit from the book. Nevertheless, it is an outstanding compilation of reviews, which the enthusiast will strive to afford.—MDL

All books reviewed here are available from the BMJ bookshop, PO Box 295, London WC1H 9YE. Prices include postage in the UK and for members of the British Forces Overseas, but overseas customers should add 15% to the value of the order for postage and packing. Payment can be made by cheque in sterling drawn on a UK bank or by credit card (Mastercard, Visa, or American Express); for the latter please give card number, expiry date, and full name.

AUTHORS’ REPLY Dr Al-Kassimi and his colleagues are, of course, right to believe that a woman farmer in Ladakh is exposed to dust while she works in the fields or sweeps the dusty floors in her house, and to that extent her condition could certainly be described as occupational, though it is clearly not industrial. Because women do most of the work in the fields, including carrying baskets of earth, sowing, and weeding, they are more exposed to dust than are the men, which probably explains their higher prevalence of silicosis. As the spring dust storms affect the whole village all the inhabitants are exposed to this environmental hazard and not only those whose main work is in the fields.

The three individuals whose radiographs were shown in our paper have since died, but no details are available.

T NORBOO
Sonam Norboo Memorial Hospital,
Leh, Ladakh, India 194101
N BRUCE
Royal Free Hospital,
London NW3 2QG
KP BALL
The Studio, Mount Park Road,
London W5 2RD

Silicosis in a Himalayan village population: role of environmental dust.

F A al Kassimi, S A al Majed, M S al Hajjaj and N E Hawass

Thorax 1991 46: 861-862
doi: 10.1136/thx.46.11.861-d

Updated information and services can be found at:
http://thorax.bmj.com/content/46/11/861.5.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/