Measures of reversibility in response to bronchodilators in chronic airflow obstruction: relation to airway calibre

D C Weir, P Sherwood Burge

Abstract
A study was carried out to examine the independence from starting prebronchodilator FEV₁ of four indices commonly used to express airflow (FEV₁) reversibility in response to bronchodilators. In 121 patients with chronic airflow obstruction with a mean prebronchodilator FEV₁ of 1.81 (43.9% of predicted values) the change in FEV₁, expressed as a percentage of the patient’s predicted FEV₁, was the least dependent on starting FEV₁. Reversibility, expressed as a percentage of the prebronchodilator value or as a percentage of the maximal possible increase (predicted minus starting FEV₁) was correlated with starting FEV₁.

Clinicians and research workers often measure the reversibility of airflow obstruction in response to bronchodilators. Treatment, inclusion in drug trials, and diagnostic labelling often depend on the result of such tests. The most informative way of expressing the results, however, is not clear.¹ The most common way is to express the absolute improvement in forced expiratory volume in one second (FEV₁) as a percentage of the prebronchodilator value. When expressed in this way, however, small absolute changes in FEV₁ become large percentage changes in patients with a low starting FEV₁, so that those patients with the greatest impairment of lung function commonly appear to have the greatest reversibility.² It has been suggested that expressing the reversibility as an index of the capacity to respond—(absolute change/predicted FEV₁ − prebronchodilator FEV₁ × 100)—is independent of the prebronchodilator treatment level and may in some circumstances be a more appropriate index of reversibility.³ This conclusion, however, was based on the results of a single test of response to an anticholinergic agent in a well defined homogeneous group of patients. We have examined the relation of this index and three other commonly used indices of reversibility in response to the prebronchodilator FEV₁ in a heterogeneous group of patients with chronic airflow obstruction, measuring the response to both an anticholinergic agent, ipratropium bromide, and a β₂ agonist, salbutamol.

Methods
One hundred and twenty one outpatients, with a diagnosis of non-asthmatic chronic airflow obstruction and an FEV₁ below 70% predicted, completed a trial to assess corticosteroid responsiveness.⁴ Reversibility of the FEV₁ in response to 500 µg ipratropium bromide and 10 mg salbutamol was measured on different days during the 14 day run in period, before any corticosteroid was administered. Patients were asked to refrain from inhaled bronchodilators for six hours and oral bronchodilators for 24 hours before the laboratory visit. Each drug was given diluted in 2 ml normal saline via an Inspiron Mini neb driven by the same air compressor to dryness. FEV₁ was measured on a dry wedge spirometer (Vitalograph) before the drug was inhaled and 20 minutes (salbutamol) or 25 minutes (ipratropium) after nebulisation had finished. The mean of three technically satisfactory attempts within 10% or 100 ml (whichever was the smaller) was used for subsequent analysis.

Reversibility of FEV₁ was expressed in four ways, as shown below:

1 as absolute change (ml) from the prebronchodilator value (absolute):
 postbronchodilator FEV₁ − prebronchodilator FEV₁ (ml)

2 as a percentage of the initial prebronchodilator value (% initial):
 postbronchodilator FEV₁ − prebronchodilator FEV₁ × 100%
 prebronchodilator FEV₁

3 as a percentage of the predicted FEV₁ (% predicted):
 postbronchodilator FEV₁ − prebronchodilator FEV₁ × 100%
 predicted FEV₁

4 as a percentage of the “possible” reversibility (% possible):
 postbronchodilator FEV₁ − prebronchodilator FEV₁ × 100%.
Table 1 Mean (SEM) changes for each FEV₁, reversibility index in response to both drugs

<table>
<thead>
<tr>
<th>Reversibility of FEV₁</th>
<th>Salbutamol 10 mg</th>
<th>Ipratropium bromide 500 µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute (ml)</td>
<td>208 (19)</td>
<td>216 (18)</td>
</tr>
<tr>
<td>% initial</td>
<td>18-6 (1-5)</td>
<td>19-7 (1-6)</td>
</tr>
<tr>
<td>% predicted</td>
<td>7-3 (0-6)</td>
<td>8-1 (0-7)</td>
</tr>
<tr>
<td>% possible</td>
<td>16-0 (1-7)</td>
<td>18-6 (2-3)</td>
</tr>
</tbody>
</table>

All negative change was classed as zero. Spearman ranked correlation coefficients were determined for each index. The prebronchodilator FEV₁ was expressed as an absolute value and as a percentage of the predicted value.

Results

Of the 121 patients (27 female) studied, all had reversibility assessed in response to 10 mg salbutamol and 119 in response to 500 µg ipratropium bromide. The mean (SEM) age was 62 (0-8) years and mean prebronchodilator FEV₁, 1-18 (0-04) litres (43-9% (1-6%) predicted). The predicted FEV₁ ranged from 1-34 to 4-54 litres. One hundred and eight patients were current smokers or ex-smokers, with an average cigarette consumption of 770 (49) cigarette years.

The mean change in each index for both drugs is given in table 1. Only 19 patients had a postbronchodilator FEV₁ of more than 70% of the predicted value after salbutamol and 22 patients after ipratropium bromide. The correlation coefficients for the reversibility indices and prebronchodilator FEV₁, expressed as an absolute value and as a percentage of the predicted value are shown in table 2. Small but significant associations were seen between both FEV₁ and FEV₁ as % predicted and reversibility expressed as % initial and % possible. This was true for both salbutamol and ipratropium bromide. When reversibility was expressed as absolute change and as % predicted the values were not significantly associated with the prebronchodilator FEV₁.

Discussion

Reversibility of FEV₁ when expressed as a percentage of an individual’s predicted FEV₁, or as the absolute change was independent of starting FEV₁ in this group of patients. In contrast to Postma et al,⁴ we found a statistically significant association between reversibility expressed as a percentage of the capacity to respond (% possible) and the prebronchodilator FEV₁. The most likely explanation for the differing findings lies in the selection of patients. Postma et al studied a selected group of patients with a homogeneous degree of airflow obstruction (FEV₁, 1-2-2-5 l/s, an FEV₁/FVC ratio of 40-55%, and an improvement after theophylline of less than 15% of prebronchodilator value). Our patient group was more heterogeneous for initial FEV₁, and they were not selected according to criteria based on reversibility. Our findings therefore may be more generally applicable to patients with chronic airflow obstruction not thought to be due to asthma.

In the same study the Dutch group found a statistically independent influence of their reversibility index—% pr — in (our % possible)—on decline in FEV₁ with time.⁴ In their own study and others, however, decline in FEV₁ was inversely associated with the level of the initial FEV₁. On the basis of our results it would be unwise to extrapolate their conclusions generally. In a group of patients similar to ours with a heterogeneous degree of airflow obstruction any relation between decline in FEV₁ and reversibility expressed as a percentage of possible reversibility may be a consequence of the dependence of each on the initial FEV₁.

The choice of which index of reversibility should be used in a particular study will depend on the reason for investigating reversibility. Intuitively, an index free of dependence on another variable under study may seem generally most appropriate. If, however, the use of an FEV₁ dependent variable gives additional useful information about the question under study—say, decline in lung function or treatment response—then the use of that variable will be justified. In all cases, however, the data on reversibility generated by a study should be examined for dependence on prebroncho-

* * p < 0-05.

Table 2 Spearman correlation coefficients (95% confidence intervals) for reversibility indices and prebronchodilator FEV₁, expressed as absolute values and as percentages of predicted values

<table>
<thead>
<tr>
<th>Reversibility of FEV₁</th>
<th>Salbutamol 10 mg</th>
<th>Ipratropium bromide 500 µg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Litres</td>
<td>% predicted</td>
</tr>
<tr>
<td>Absolute</td>
<td>0-17</td>
<td>0-03</td>
</tr>
<tr>
<td>(% 0-01 to 0-34)</td>
<td></td>
<td>(0-15 to 0-20)</td>
</tr>
<tr>
<td>% initial</td>
<td>-0-19*</td>
<td>-0-25*</td>
</tr>
<tr>
<td>(% -0-36 to -0-01)</td>
<td></td>
<td>(-0-08 to -0-41)</td>
</tr>
<tr>
<td>% predicted</td>
<td>0-11</td>
<td>0-11</td>
</tr>
<tr>
<td>(% -0-07 to 0-28)</td>
<td></td>
<td>(-0-07 to 0-28)</td>
</tr>
<tr>
<td>% possible</td>
<td>0-30*</td>
<td>0-37*</td>
</tr>
<tr>
<td>(0-15 to 0-45)</td>
<td></td>
<td>(0-18 to 0-49)</td>
</tr>
</tbody>
</table>

*p < 0-05.
dilator FEV₁. The relation of a particular index to prebronchodilator FEV₁ may well vary with differing populations studied, depending on spread of FEV₁ values, underlying diagnosis, age and sex distribution, and other factors. Using a measure which is independent of prebronchodilator FEV₁, however, will facilitate comparisons between the results of different studies.

1 Anonymous. Assessment of airflow obstruction [editorial].
2 Anonymous. Airflow limitation—reversible or irreversible?

Surgical Pathology of Lung Neoplasms.
Edited by AM Marchevsky. (Pp 709; £180.)

This is the first edition of a book that is largely devoted to its surgical pathology of lung and pleural neoplasms but is supplemented by chapters on epidemiology, experimental models, and cytology. I found the supplementary chapters rather disappointing, particularly the epidemiological ones, which were very superficial. The statement on page 2 that “All forms of asbestos... have been shown to have the same risk for subsequent development of lung cancer after industrial exposure” over-simplifies the facts. I am not convinced that it was advisable to include these chapters in this book. The surgical pathology chapters provide comprehensive descriptions of the macroscopic, microscopic, electron microscopic, and immunohistochecmical features of a wide variety of lung neoplasms. The chapters are well referenced and up to date, though there is the odd missed reference—for example, Humphreys et al (1988), cited on page 372, is not included in the list of references at the end of the chapter. The chapter on classification is disappointing because it merely reiterates the World Health Organisation classification and gives no comparison of the strengths and weaknesses between the classifications. An irritating feature of the presentation is the interruption of the text by several pages of illustrations, which are often well away from the page on which they are referenced to; in addition, many figures take up only half a page with blank space beneath them. On balance, I thought that the book was very useful as a straightforward, comprehensive, well illustrated account of pulmonary tumours and I have found it useful in my own laboratory when dealing with surgical resections. I have found it less useful, however, in dealing with small biopsy specimens.—ARG

A further book notice appears on page 76.
Measures of reversibility in response to bronchodilators in chronic airflow obstruction: relation to airway calibre.

D. C. Weir and P. Sherwood Burge

Thorax 1991 46: 43-45
doi: 10.1136/thx.46.1.43

Updated information and services can be found at:
http://thorax.bmj.com/content/46/1/43

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/