Case-control study of prescribed fenoterol and death from asthma in New Zealand, 1977–81

Earlier this year we and others commented on a case-control study by Crane and others suggesting that fenoterol was associated with risk of death in patients with severe asthma in New Zealand. We did not accept the validity of the first report because of several problems in methods and analysis. The most serious problems were: (1) ambiguity about the underlying clinical question; (2) poor standardizations of data gathering from cases and controls; and (3) inappropriate classifications of severity of asthma leading to inadequate adjustment for severity as a confounder. We now comment on a second case-control study by the same group (Marlton 1991; 1:170–3).

The second case-control study explores a possible relation between asthma medications and risk of death in asthmatic patients aged 5–85 years in New Zealand during the period 1977–81. The patients were asthmatics (70% of whom were hospitalized (ICD 493) of patients who had been admitted to hospital for asthma within 12 months of death. For each case four asthmatic controls discharged the same year were selected at random from the same hospital and matched on age. The key findings in this second study were that the odds ratio (relative risk) for asthma death in all patients prescribed inhaled fenoterol was 1.99; for patients prescribed three or more categories of asthma drugs 2.98; for patients with a previous admission for asthma in the past 12 months 3.91; and for patients prescribed oral corticosteroids at the time of admission 5.83. In a group of patients with the most severe asthma (defined by a previous admission for asthma during the past 12 months and prescribed oral corticosteroids at time of admission) the relative risk of death for those prescribed inhaled fenoterol was 9.82. Of particular note, the authors reported an odds ratio of 5.2 among non-Europeans, compared with 1.2 (NS) for Caucasians. Also of note, the risk was greater in men (2.77) than women (1.53) and higher in persons under 20 (4.0) than those over 20 (1.3). The investigators concluded that “these findings add further support to the hypothesis that inhaled fenoterol increases the risk of death in patients with severe asthma.”

In the first case-control study the investigators confused the question of whether fenoterol has an acute toxic effect when used during hospitalization with the question of whether long-term chronic use increases the risk of death. This confusion occurred in part because drug information for cases came from general practitioners but for the controls from hospital medical records. In the second study the investigators focused on the question of chronic use of fenoterol by collecting data on drug exposure for cases and controls from records pertaining to the hospital admission before an index event (death for cases, hospitalization for controls). The improvement in data gathering methods does not offset the persisting principal conceptual, methodological, and execution problem of the original study—that is, inadequacy in the classification and adjustment for asthma severity and the likely confounding which probably results. They also repeated a serious error by dissociating the time when severity was measured from the time when exposure was classified. In this regard we do not agree that medications noted at admission or discharge are a valid proxy for “chronic drug usage.”

The investigators have not addressed an important alternative explanation for their findings—namely, that sicker asthmatic patients tend to be prescribed agents from other medications to fenoterol and that sicker asthmatic patients are more likely to die than those with less severe disease. Fenoterol was marketed in New Zealand as a medication to be tried when control of the patient is otherwise difficult.

The contrasting relative risks for non-Europeans and Europeans, men and women, and those under age 20 and over age 20 are inconsistent with the hypothesis that fenoterol is an offensive therapy. The data of this case-control study may therefore be the dilemma which faces investigators of aviation accidents. Does one impute the accident to the aircraft and its manufacturer or was it operator (pilot) error? The data of the original study (and the earlier one) do not allow us to set aside a second important competing hypothesis: fenoterol (or any inhaled bronchodilator) is risky when prescribed in the context of a substantial appropriateness of care or when there is poor adherence to an appropriate therapeutic regimen. This may be the situation, for example, in the United States, where blacks have a death rate for asthma three to four times that of whites. In this age group, the mortality in the age group 5–34 is now primarily a problem of inner city ethnic minority populations. We now believe that in the United States this is primarily a reflection of poorer access to health care of high quality and poor adherence to therapeutic regimens.

The fact that two other well established pharmacological, oral corticosteroids and theophylline, had increased risks was not adequately discussed by the authors. As they point out, both of these categories of drugs were prescribed at discharge to virtually all those with severe asthma, and the confidence limits for the relative risk estimates were therefore not very narrow. When they choose to attribute the increased risks for theophyllines and oral corticosteroids to chance while choosing to accept the increased relative risk for fenoterol as a reflection of its toxicity it is not at all clear what is going on.

We conclude that, for the second study as well as for the first, problems in the design of the study and the way in which the data were analysed make it impossible for us to agree with the authors’ conclusions and interpretation pertaining to only the primary history of the findings. As with the previous study, we believe that the results are consistent with several hypotheses which are equally tenable. The investigation conclusions in this study are not supported by the data presented and failing to give due weight to these alternative hypotheses in their discussion and conclusions. They have nevertheless stimulated and challenged the scientific community to take a closer look at the disturbing possibility that good drugs when poorly used may be potentially harmful. This underscores the urgent need for better education of both health professionals and individuals with asthma about the principles and practice of treatment for this common condition.

WALTER O SPITZER
Department of Epidemiology and Biostatistics, McGill University, Montreal, Canada

A SONJA BUIST
Department of Medicine, Division of Pulmonary Medicine, Oregon Health Sciences University, Portland, Oregon, USA

AUTHORS’ REPLY

The letter by Professors Spitzer and Buist consists almost entirely of a repetition of the criticisms, made by a larger group of Boehringer Ingelheim reviewers,1 of our first New Zealand case-control study. These criticisms have already been answered at length.2 It is surprising that the hypothesis that our findings are due to fenoterol being prescribed to those with more severe asthma has been raised once again, and even described as “equally tenable” by another.2 No substantive evidence has been presented in support of the hypothesis. The evidence in fact is almost entirely against it. But as it has been raised again it is necessary for us to re-examine the available evidence.

We reviewed advertisements in clinical journals at the time of fenoterol’s introduction into New Zealand, and found no evidence that it was “marketed in New Zealand as a medication to be tried when control of the patient is difficult.” Professors Spitzer and Buist provide no reference for this claim, and it is unlikely that fenoterol could have gained a 30% market share if it had been targeted at such a small and specific group. We can also find no substantive evidence that fenoterol was selectively prescribed to more severe asthmatic patients (within the population of recently hospitalized asthmatics, on which our studies are based). Most importantly, the increased relative risk for fenoterol when our analyses are restricted to those with the most severe asthma effectively refutes the confounding by severity hypothesis. This point has already been made by one group of epidemiologists who were commissioned by Boehringer Ingelheim to review our first study, and who reached different conclusions from Professors Spitzer and Buist.

Professors Spitzer and Buist have also suggested that “sicker patients tend to be switched from other medications to fenoterol”, but provide no data to support this claim. This actually indicates that a hospital admission for asthma is a good marker of asthma which is perceived to be severe enough to require changes in medication. More importantly, it means that the confounding by severity hypothesis can be tested by examining changes in medication resulting from such an event. We have tested this hypothesis with the data for the controls in our most recent case-control study. Each of the controls had two hospital admissions for asthma over a 12 month period, and we have examined the 420 admissions in the 210 controls for which all the relevant data were available. There were
24 changes from another beta agonist to fenoterol as a result of the admission, and 46 changes in the opposite direction (most of the latter patients were switched to salbutamol). On the other hand, there were substantial changes for other classes of asthma drugs. In particular, as a result of the admission, the proportion of patients prescribed oral corticosteroids increased from 28% to 62%.

Thus patients were often prescribed prophylactic medication as a result of their severe attack, but there is no evidence that sicker patients were switched to fenoterol.

The comment about standard care in the United States among blacks is not relevant to our findings in the Maori. It is well known that Maori have a higher asthma death rate than non-Maori. We have shown something quite different: that the Maori who use fenoterol have a higher death rate than the Maori who do not use fenoterol. The implication that this finding is due to confounding by ethnicity is nonsense as the comparison was made within the one ethnic group.

More generally, are Professors Spitzer and Buist suggesting that the standard of medical care in New Zealand declined so rapidly in 1976 (when fenoterol was introduced) that this accounted for a doubling of the mortality in two years? If so, what evidence do they have for this? Do they also imply that the standards of medical care also declined suddenly in the six countries which had mortality epidemics in the 1960s when isoprenaline forte was introduced? Furthermore, if any bronchodilator can be harmful when prescribed in the context of poor medical care, why did New Zealand not see an epidemic when salbutamol was introduced?

Professors Spitzer and Buist suggest that we have challenged the scientific community with a `poorly motivated' study. It is our belief that good drug usage when poorly may be potentially harmful. We have not. The scientific community already knows this. Rather we have suggested that a poorly selected beta agonist, which is more potent than salbutamol but available by metered dose inhaler at twice the dose of salbutamol, may have been responsible for an epidemic of asthma deaths in young people with severe asthma in New Zealand.

We repeatedly raised the same criticisms of our work, Professors Spitzer and Buist, or Boehringer Ingelheim, should inform the scientific community of the following: (1) Why was fenoterol marketed as a "fibreoptic bronchoscopy hype" (200 µg/puff compared with salbutamol at 100 µg/puff) when it was known to be more potent and to have greater cardiac effects than other commonly available beta agonists? (2) Why was the nebubus formulation available in New Zealand (5 mg/ml) five times the concentration used in Canada (1 mg/ml)? (3) Why was fenoterol never licensed in the United States? (4) Why was fenoterol marketed as a highly selective beta agonist when Boehringer Ingelheim's own funded experiments had indicated that in the clinical situation it was no more selective than orciprenalin, the poorly selective agent it is compared to.

In conclusion, we concur with the independent report commissioned by the New Zealand Health Department that the evidence proposed by the Boehringer Ingelheim reviewers in favour of the confounding hypothesis is indirect, circumstantial, and considerably subjective. Although further research would clearly be valuable we also agree with the New Zealand Health Department's conclusion that the current balance of evidence is now in favour of a causal association between fenoterol use and asthma mortality. As a result, the New Zealand Minister of Health has moved to severely restrict the availability of fenoterol by removing it from the Drug Tariff, and a similar policy has now been adopted in Australia.

NEIL PEARCE
JULIAN CRANE
GILBERT BURGESS
RICHARD BEASLEY
Department of Medicine,
School of Medical Science,
Wellington, New Zealand


Local anaesthesia for fibreoptic bronchoscopy
Dr AC Davidson and colleagues (March 1990;45:239) were impressed with the local anaesthesia produced by a tricriocoid injection of 4-6 ml 5% cocaine (200-300 mg). They went on to state that they were unaware of a formal comparison of cocaine and lignocaine as local anaesthetics during bronchoscopy but it would seem that many centres consider changing to the tricriocoid instillation of cocaine for fibreoptic bronchoscopy.

In a double blind, randomised study of 60 patients we recently compared the local anaesthetic effects of intra-tracheal injections of lignocaine (4 ml of 4%: 160 mg) with cocaine (4 ml of 2.5%: 100 mg). Local anaesthesia was assessed by numbers of coughs, operator acceptability, and patient discomfort; in all areas cocaine scored only slightly better than lignocaine (for example, there was a mean of eight coughs per procedure with cocaine compared with 11 with lignocaine), none of the differences achieving statistical significance. The impression of Dr Davidson and colleagues of the superiority of cocaine may reflect their use of a dose two to three times higher than we used in our study. It has been recommended that no more than 1-0-1-5 mg/kg cocaine should be applied to mucous membranes in adults, whereas others have suggested a maximum dose as low as 50 mg/kg; the use of higher doses may increase the risks of toxicity.

We agree with Kinneir et al that tricriocoid injections of local anaesthetic are well tolerated and produce effective local anaesthesia for fibreoptic bronchoscopy. When used in the doses recommended above cocaine and lignocaine appear equally effective.

CHARELS TEALE
MF MUERS
SB PEARSON
Pulmonary Function Laboratory, Killingbeck Hospital, Leeds LS14 6UQ

3 Kinneir WJM, Reynolds L, Gaskin D, Macfarlane JT. Comparison of tricriocid and bronchoscopic routes for administration of local anaesthesia before fibreoptic bronchoscopy [abstract]. Thorax 1988;34:805P.

AUTHOR'S REPLY We are grateful to Dr Teale and colleagues for drawing our attention to their study of local anaesthesia for bronchoscopy, which we had overlooked. The main point that we were making was that patient tolerance is dependent on the effectiveness of local anaesthesia and two studies now attest to the superiority of the tricriocid route. Our impression of the greater effectiveness of cocaine may be the result of our use of a higher dose (200-300 mg) than that used by Dr Teale and colleagues (100 mg); it is interesting that a trend towards a superiority of cocaine is apparent in their abstract. The question of the safe maximum dose of topical anaesthetic agents is controversial and surveys of practice in the UK suggest the use of more lignocaine at bronchoscopy than many authorities recommend. That is safe practice is suggested by a study demonstrating serum concentrations well below the toxic range with topical doses in excess of 500 mg, presumably because only a proportion of the administered dose is actually absorbed through mucous membranes. The recommended doses quoted by Dr Teale are unrealistically low anachronistic, which may overlook the potential for cocaine induced neurological or cardiac toxicity.

AC DAVIDSON
LEACH
BATEMAN
St Thomas's Hospital, London SE1 7EH

1 Kinneir WJM, Reynolds L, Gaskin D, Macfarlane JT. Comparison of tricriocid and bronchoscopic routes for administration of local anaesthesia before fibreoptic bronchoscopy [abstract]. Thorax 1988;43:905P.

BCG vaccination of schoolchildren in England and Wales
One aspect of discontinuing routine BCG not discussed by Drs V H Springett and I Sutherland (February 1990;45:83-8) is the possible increase in mortality which may result.

Using published data from the Office of...
Case-control study of prescribed fenoterol and death from asthma in New Zealand, 1977-81.
W O Spitzer and A S Buist

Thorax 1990 45: 645-646
doi: 10.1136/thx.45.8.645

Updated information and services can be found at:
http://thorax.bmj.com/content/45/8/645.1.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/