LETTERS TO THE EDITOR

Diagnosis of pulmonary disease in human immunodeficiency virus infection: role of transbronchial biopsy and bronchoalveolar lavage

Dr MH Griffiths and colleagues (July 1989; 44:554-8) recorded a high incidence of complications while performing transbronchial biopsies in patients with HIV infection, whereas the side effects seen with bronchoalveolar lavage were few and unimportant. Their comparison of the risk-benefit ratios of the two procedures encouraged use of lavage rather than transbronchial biopsy. Our experience at the Institute of Infectious Diseases in the University of Verona has been dissimilar in terms both of complications and of sensitivity rate. Bronchoscopy was carried out on 29 HIV infected patients with clinical and radiographic findings that suggested a pulmonary disorder but with an arterial oxygen tension above 50 mm Hg (6.7 kPa). There were none of the important complications described by Griffiths (pneumothorax, haemorrhage) with transbronchial biopsy sampling. Lavage was also carried out on each occasion. Techniques were performed under fluoroscopic guidance and this, plus other factors, may account for the lack of untoward effects in our experience. Fluoroscopic guidance also allowed us to take biopsy specimens from areas showing consolidation on the chest radiograph. This probably improved the diagnostic sensitivity in cases of tuberculous infection (six cases), which may occur more frequently than the data of Dr Griffiths and her colleagues suggest.

The diagnostic sensitivities of the two techniques were similar (76% for transbronchial biopsy and 66% for lavage), though the histological picture available from the biopsy procedure provided more complete microbiological information. This is not surprising as Pneumocystis carinii pneumonia (the most frequent opportunistic infection in this context) usually results from the reactivation of latent endogenous infection and the organisms may be found in healthy subjects.1 Thus the demonstration of P carinii alone in lavage specimens does not provide proof that it is causing pneumonia in these patients. The high rate of Pneumocystis pneumonia in AIDS justifies an empirical approach to treatment based on clinical and radiograph findings; if a direct diagnostic assessment is required we believe that biopsy provides the best information.

Dr Griffiths and colleagues are correct stating that specimens obtained during bronchoscopy may also be useful for evaluating the response to treatment. For pneumocystis pneumonia, however, this is true only for biopsy as lavage fluid often remains positive weeks after the beginning of treatment, regardless of the outcome of the disease.2 Biopsy samples provide an anatomical picture of the alveolar status and are more reliable than lavage both for diagnosis and for evaluating the evolution of P carinii infection in the lung. This to some extent also applies to cytomegalovirus infection as the typical inclusion bodies are often seen without clinical disease. Inclusions indicate active cytomegalovirus infection according to the criteria of the Communicable Diseases Center,3 but local pathogenicity is disputed.4 Factors other than fluoroscopy: it may have played some part in the dissimilar findings in our patients. We believe that transbronchial biopsy still deserves an important place in the investigation of pulmonary disorders in HIV infection.

GIOVANNI DI PERRI
ROBERTO LUZZATI
MARINA MALENA
MARIO CRUCIANI
ERCOLE CONCIA
DANTE BASSETTI
Istituto di Malattie Infettive, University of Verona
ANGELO CAZZADORI
Istituto di Malattie Infettive, University of Verona, Italy


AUTHOR'S REPLY The difference in the incidence of complications of transbronchial biopsy in our series and Dr Di Perri's series may be partly explained by the smaller numbers in their series (29) than ours (74). Reports on larger series from other centres also record a significant incidence of complications for transbronchial biopsy in HIV infected patients (our refs 12 and 32) and fluoroscopy has not, in the experience of other groups, provided a reduced risk. Milligan et al (our ref 32) found no significant difference in the incidence of complications or the diagnostic yield between 63 transbronchial biopsies performed with fluoroscopic control and without fluoroscopy in HIV patients being investigated for diffuse pulmonary infiltrates. It is not clear from the letter of Dr Di Perri and his colleagues what the diagnostic categories of the 29 patients were, but if six had tuberculosis the proportion of patients with pneumocystis pneumonia was probably lower than in our series, and it was in this diagnostic category that complications occurred. Of the 17 serious complications (three series, 16 (14 endogenous pneumothorax, two haemorrhage) occurred after transbronchial biopsy in patients with pneumocystis pneumonia.

We do not think that our missing cases of tuberculosis, as Dr Di Perri suggests, because none of our patients developed tuberculosis during close follow up. It has now been established that there is a genuinely lower incidence of tuberculosis in HIV infected patients in the United Kingdom than in other parts of the world,1 and this has been attributed to the lower incidence of latent tuberculosis infection in the population at risk of HIV infection in this country. We agree that knowing the histological appearances contributes to a more complete picture of the morbidity of AIDS, but we were unable to attribute any improvement in patient management to this knowledge. The nature of the host response to pneumocystis infection (our largest diagnostic category), as assessed by transbronchial biopsy, did not appear to correlate either with the degree of clinical distress or with the response to treatment. It may be that an endogenous pneumocystis was important clinically and for this we found bronchoalveolar lavage more effective than transbronchial biopsy, probably because of the larger alveolar volume sampled.

While the presence of Pneumocystis may have been recorded in the lungs of subjects other than those with AIDS, those referred to in the work of Weiss et al (their ref 1) were not healthy. They were older newborn babies and infants with fatal conditions or old people with generalised illnesses. In practice we have not found any P carinii in bronchoalveolar lavage fluid from patients with unrelated conditions or in immunosuppressed patients who did not have clinically important infection. P carinii must be regarded as a highly significant finding in a bronchoalveolar lavage specimen. Transbronchial biopsy, even when it gives a negative result, does not alter the clinical significance of this finding. It has not been our experience that P carinii remains detectable by bronchoalveolar lavage for weeks after treatment. On the contrary, the cysts disappear from the lavage fluid within days of the start of treatment; the radiological opacities are slower to clear.

We would agree that finding cytomegalovirus inclusions in bronchoalveolar lavage or transbronchial biopsy specimens is not evidence of important pulmonary disease but it does indicate the presence of systemic cytomegalovirus infection; morbidity in less accessible sites, such as the eye or the central nervous system, might then be attributed to this infection.

We remain unconvinced of any benefit to these patients gained by taking transbronchial biopsy specimens.

M H GRIFFITHS
G KOCJAN
R F MILLER

Diaphragmatic paresis: pathophysiology, clinical features, and investigation

We were interested to read the review by Dr John Gibson (November 1989; 44:960-70). Dr Gibson supports the attractive and widely held hypothesis that the "shrinking lung" syndrome of systemic lupus erythematosus is due to diaphragm weakness. In a recent study using a wide range of tests for respiratory muscle strength, however, we concluded that the loss of lung volume observed in 12 patients with the syndrome was not explained by an abnormality of the diaphragm or phrenic nerves in the absence of a generalised myopathy or myositis.1 We believe that the papers quoted provide less than solid evidence of isolated bilateral diaphragm weakness, as they all used a limited set of tests to assess diaphragm function and most studied small numbers of patients. In the largest study2 maximum transdiaphragmatic pressure was measured during static occluded efforts alone, and compared with a normal range obtained from 10 normal males. Not

Downloaded from http://thorax.bmj.com/ on June 25, 2017 - Published by group.bmj.com
Diagnosis of pulmonary disease in human immunodeficiency virus infection role of transbronchial biopsy and bronchoalveolar lavage.

G Di Perri, R Luzzati, M Malena, M Cruciani, E Concia, D Bassetti and A Cazzadori

Thorax 1990 45: 302
doi: 10.1136/thx.45.4.302

Updated information and services can be found at:
http://thorax.bmj.com/content/45/4/302.1.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/