We were interested to read the article by Dr AR Webb and others (August 1989;44:674–5) showing patients’ preference for lignocaine gel over lignocaine aerosol for topical nasal anaesthesia preceding fibroptic bronchoscopy. Seven years ago we reported the same preference for lignocaine gel by patients and normal subjects. Nasal anaesthesia was equally effective with these two different methods, but the use of the aerosol was often associated with considerable nasal discomfort, an unpleasant taste, and epiphora, which did not occur with the gel. The additional advantage of the lubricating effect of the gel in passing the bronchoscope noted by Dr Webb and colleagues was also reported in our study. Furthermore, in our study plasma lignocaine concentrations were lower after the same dose of lignocaine gel by comparison with the aerosol, suggesting that the gel might also be safer in terms of lignocaine toxicity.

John Fethimiou, Higenbottam
Respiratory Physiology Department, Papworth Hospital, Papworth Everard, Cambridge

AUTHORS’ REPLY We agree with Drs O’Driscoll and Webb that users of lignocaine gel for topical nasal anaesthesia may develop their own techniques for applying the gel. Indeed, some bronchoscopists in our own unit use a spray based method similar to the one they describe. The technique documented in both the “Methods” and the “Discussion” sections; it is the detail which is different in the two sections. We can assure readers that it is no more laborious to inject the gel from tube to nostril and massage it posteriorly than it is to open a syringe and Everett Kwill, draw the gel from the tube to the syringe, and then inject. It is also a little cheaper and, as our data show, provides effective topical anaesthesia.

We are grateful to John Fethimiou and Higenbottam for bringing their paper to our attention. The peak plasma lignocaine concentration in the nine patients given gel was reported to be not significantly less than the concentration in the 32 patients given lignocaine spray, though a lower peak plasma concentration was noted in volunteers given lower dosages of spray and gel. Thus lignocaine gel is at least as safe as lignocaine spray.

These authors suggested a preference by patients for the gel in the discussion of their paper, and we have now measured the preference with a randomised study focusing on acceptability to patients.

AR WEBB

Regional Respiratory Laboratory, Brook General Hospital, London SE18 4LW

We recommend that patients should choose which technique they use to suit their own needs. The authors believe that lignocaine gel is no less effective than lignocaine spray and it is certainly safer. The technique described by Drs O’Driscoll and Webb is easy to perform and provides a simple means of increasing the effectiveness of topical anaesthesia.

John Fethimiou, Higenbottam

Respiratory Physiology Department, Papworth Hospital, Papworth Everard, Cambridge

Disruption in respiratory mechanics in infants with bronchiolitis

I have read the report by Dr J Seidenberg and others (August 1989;44:660–7) on lung function in infants with bronchiolitis with considerable interest given our own studies in this field. Whereas their results relating to forced and passive expiratory flow are certainly in line with what we expect in this obstructive lung disease, it appears that they, like us, are in fact finding surprisingly low values for thoracic gas volume (TGV). It is true that in the acute phase their average TGV was 130% of predicted and in the chronic phase 126%, but the scatter was wide (see their SEM values) and several infants must have had values in or below their normal range. In our study in the chronic phase we noted many infants with TGV values below our normal range, which is somewhat higher than the range used by Dr Seidenberg and his colleagues. Given the differences in normal range I suspect that the two studies contain an appreciable number of non-obstructive infants with surprisingly low TGV values. They do not really come to grips with the thorny problem of whether or not TGV measurements are reliable in bronchiolitis. How, for example, do they know that all their values were the high and low ends of predicted? In acute and chronic phases are not underestimated?

I was delighted to see their results, which seem to confirm our own anxieties and suggest that our results were not simply an artefact. I should be most interested in their further thoughts on this issue.

S Godfrey
Department of Pediatrics, Hadassah University Hospital, Mount Scopus, Jerusalem

Adverse effect of additional weight on exercise against gravity in patients with chronic obstructive airways disease

The conclusions of Dr C R Swinburn and others (September 1989;44:716–20) can be derived from common sense and an elementary knowledge of physics.

Acceleration or deceleration of a mass requires a force. If the mass is increased, a greater force is needed for the same acceleration. Alternatively, if the force is unchanged, less acceleration is produced (force = mass x acceleration). In man the force is produced by muscle contraction, which produces energy. The energy is proportional to the force produced. When one walks at a steady pace, the legs alternately accelerate and decelerate but the body does not. Therefore the wearing of lead aprons will not substantially increase energy requirements, unless they are worn on the legs, not the thorax. Clearly, in step testing the whole body accelerates and decelerates in a vertical plane against gravity. The energy being dissipated in the wearing of lead aprons will make a difference to energy expenditure and hence oxygen consumption during this form of exercise.
Topical nasal anaesthesia for fibreoptic bronchoscopy.

B R O'Driscoll and J R Webb

Thorax 1990 45: 79
doi: 10.1136/thx.45.1.79