Heterozygous FZ \(\alpha \) antitrypsin deficiency associated with severe emphysema and hepatic disease: case report and family study

C P KELLY, D N M TYRELL, G S A MCDONALD, D B WHITEHOUSE, J S PRICHARD

From the Departments of Clinical Medicine and Pathology, Trinity College and St James's Hospital, Dublin, and the Medical Research Council Human Biochemical Genetics Unit, Galton Laboratory, University College London

ABSTRACT A patient with advanced emphysema and cor pulmonale had the changes of \(\alpha \) antitrypsin deficiency in a liver biopsy specimen and was shown to have the phenotype PiFZ. This case supports the contention that the \(F \) allele of \(\alpha \) antitrypsin predisposes to the development of emphysema, particularly when it occurs in conjunction with the \(Z \) allele.

The association between PiZZ \(\alpha \) antitrypsin deficiency and the development of emphysema and cirrhosis is well recognised.\(^{1,2}\) It is less clear whether other, more unusual \(\alpha \) antitrypsin phenotypes are associated with pulmonary or hepatic disease.\(^{3}\) The uncommon \(F \) variant of \(\alpha \) antitrypsin was first described by Fagerhol et al.\(^{4}\) The FZ phenotype is rare, occurring in about 1/17 000 of the population, but may be associated with an increased risk for the development of obstructive lung disease.\(^{5}\)

Case report

A 56 year old woman presented with drowsiness and oedema. She had a chronic non-productive cough and had had occasional respiratory tract infections. She had smoked on average five cigarettes a day for 40 years; her alcohol intake was minimal. On examination she had central cyanosis; her jugular venous pressure was substantially raised; and there was gross peripheral oedema, ascites, and tricuspid incompetence with pulsatile hepatomegaly. Investigations indicated a mixed metabolic and respiratory acidosis, polycythaemia, and mildly abnormal liver function (\(\text{pH} \) 7-26, arterial oxygen tension (\(\text{PaO}_2 \)) 5-7 kPa, arterial carbon dioxide tension (\(\text{PaCO}_2 \)) 6-5 kPa, bicarbonate 15-7 mmol/l, haemoglobin 17-3 g/dl, alkaline phosphatase 261 (normal 30–100) IU/l), prothrombin ratio 1-2, lactate dehydrogenase 168 (normal 100–350) IU/l, aspartate aminotransferase 38 (normal 7–40) IU/l). The patient responded to treatment with resolution of the ascites, peripheral oedema, and tricuspid incompetence, though arterial blood gases remained abnormal (\(\text{pH} \) 7-42, \(\text{PaO}_2 \) 5-3 kPa, \(\text{PaCO}_2 \) 5-9 kPa, bicarbonate 27 mmol/l).

Fig 1 Portal tract (PT) with periportal liver cells showing fatty change and numerous globules (arrows), staining with periodic acid Schiff, of varying sizes. (Diastase PAS.)

Pulmonary function tests showed substantial and irreversible airways obstruction with air trapping (\(\text{FEV}_1 \) 0-8 (expected 2-3) l, vital capacity 2-1 (expected 3-1) l, \(\text{FEV}_1/\text{VC} \) 38%, residual volume 2-2 (expected 1-7) l, residual volume/total lung capacity 51% (expected 35%). The serum \(\alpha \) antitrypsin concentration was 2-23 (normal 1-9–3-5) g/l.

A liver biopsy, performed because of her hepatomegaly, showed numerous diastase resistant, periodic acid-Schiff positive globules in hepatocytes of zones 1 and 2, which immunoperoxidase staining showed to be positive for \(\alpha \) antitrypsin (fig 1). There was slight expansion of portal tracts by fibrosis with some bile duct reduplication. Moderate fatty change, sinusoidal congestion, and dilatation were also evident. Serum electrophoresis showed the patient’s \(\alpha \) antitrypsin phenotype to be PiFZ. After discharge from hospital she stopped smoking and remains stable. The serum \(\alpha \) antitrypsin concentration (1-56–1-67 g/l in repeated tests) is now below the normal range.

Family study

All consenting first degree relatives of the proband were seen and had a history taken, an examination, \(\alpha \) antitrypsin phenotyping (isoelectric focusing on polyacrylamide gel), measurement of serum \(\alpha \) antitrypsin concentration (single
radial immunodiffusion, Behring), measurement of lung function and volumes (FEV,
and vital capacity (Vitalograph), residual volume, and total lung capacity (helium dilution, P K Morgan)), and liver function tests.

None showed evidence of liver disease. Alpha, antitrypsin phenotype, serum \(\alpha \), antitrypsin concentrations, and lung function values are shown in figure 2. The phenotype of the proband (PiFZ) was confirmed by two other laboratories.

Discussion

This PiFZ patient presented with respiratory failure and cor pulmonale and had severe, fixed airways obstruction with air trapping. Liver biopsy showed abnormalities characteristic of \(\alpha \), antitrypsin deficiency. These changes have previously been reported in other heterozygous PiZ states—for example, PiMZ and PiSZ. Although some portal fibrosis was detected this did not amount to cirrhosis and the results of liver function tests returned to normal after treatment of her cardiopulmonary disease. Her \(\alpha \), antitrypsin was in the low normal range at presentation when she was seriously ill and subsequently fell to below normal concentrations similar to those seen in four other PiFZ patients. This illustrates the importance of \(\alpha \), antitrypsin phenotyping in identifying individuals with heterozygous \(\alpha \), antitrypsin deficiency, as \(\alpha \), antitrypsin is an acute phase reactant and concentrations may be temporarily raised during acute illness.

Four previous reports have suggested an association between the PiFZ phenotype and pulmonary disease. Two of these\(^1\) give no details of clinical condition or pulmonary function. Cockcroft et al\(^1\) described three PiFZ siblings with moderately severe airways obstruction and a mean serum \(\alpha \), antitrypsin concentration 58% of that seen in PiMM individuals. Beckman et al\(^2\) report a PiFZ patient with “bronchitis” (FEV\(_1\)/FVC 82%), whose \(\alpha \), antitrypsin concentration was 53% of the normal mean. No reference was made to the patient’s hepatic state in these reports. Brand et al\(^6\), however, reported a PiFZ non-smoking patient with cirrhosis but no evidence of emphysema.

None of the proband’s three surviving siblings or of the six children available for study shares her FZ phenotype. The death of her brother at the age of 42 from “bronchitis” raises the possibility that he too had pulmonary disease associated with \(\alpha \), antitrypsin deficiency. Two of the proband’s children are PiMZ and have substantially reduced concentrations of serum \(\alpha \), antitrypsin (fig 2). Both are non-smokers and show only a mild reduction in FEV\(_1\)/VC%. Four of the five relatives with the FM phenotype have a slightly low serum \(\alpha \), antitrypsin level at around 2.1 g/l (77% of the normal mean).

References

Heterozygous FZ alpha 1 antitrypsin deficiency associated with severe emphysema and hepatic disease: case report and family study.

C P Kelly, D N Tyrrell, G S McDonald, D B Whitehouse and J S Prichard

Thorax 1989 44: 758-759
doi: 10.1136/thx.44.9.758

Updated information and services can be found at: http://thorax.bmj.com/content/44/9/758

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/