Arterial oxygen saturation during bronchography via the fibreoptic bronchoscope

J M GOLDMAN, D C CURRIE, A D MORGAN, J V COLLINS

From the Department of Thoracic Medicine, Brompton Hospital, and the Host Defence Unit, Cardiothoracic Institute, London

Bronchography is indicated in the investigation of recurrent or chronic respiratory infection and haemoptysis, and is used to assess the extent and location of suspected or known bronchiectasis. Use of the fibreoptic bronchoscope to introduce contrast medium has the advantages over the conventional nasotracheal catheter of allowing inspection of the airways for any occluding lesion and collection of microbiological specimens or cilia from specific bronchi. Continuous monitoring of arterial oxygen saturation (Sao₂) in patients during bronchoscopy has shown that they may be at risk of desaturation. Furthermore, conventional bilateral bronchography via a nasotracheal catheter may cause falls in Sao₂ of up to 15%. The aim of this study was to measure Sao₂ during bilateral bronchography performed via the fibreoptic bronchoscope.

Methods

We studied eight patients undergoing bilateral bronchography. Their mean age was 43 years; three were female. Premedication with 0.6 mg atropine was given one hour before the procedure, and local anaesthesia was achieved with lignocaine. An Olympus BF type B3 bronchoscope was used to examine the bronchial tree and subsequently 10–20 ml of aqueous propyliodone (Dionosil, Glaxo) was injected via the suction channel with radiographs taken under the supervision of a radiologist. Intensive physiotherapy was performed before and after the procedure.

Sao₂ was measured with an Ohmeda Biox III Ear Oximeter accurate to ±2.5% down to an Sao₂ of 60%. Recordings were made on a Linseis paper writer for one hour before bronchography, during the procedure, and for a further three hours afterwards. Baseline Sao₂ was calculated by taking the mean value of estimates of Sao₂ for each minute of the preoperative trace. During the procedure the record was marked on introduction of the bronchoscope through the vocal cords, and on injection of contrast medium into the left and right bronchial tree. The lowest value of Sao₂ reached after each of these interventions (but before the next) was calculated. The duration of the period of desaturation below baseline Sao₂ after completion of the procedure was noted. Patients were studied in the supine posture, except for brief periods during the bronchography, when erect films were taken.

Spirometry was performed on each patient, before and one hour after the bronchogram, with a single breath wedge spirometer (Vitalograph) accurate to ±2% at BTPS, the best of three measurements being taken.

![Graph](image_url)

Effect of fibreoptic bronchoscopy and bilateral injection of aqueous contrast medium into the bronchial tree on arterial oxygen saturation, measured with an ear oximeter (patient No 1). FOB—fibreoptic bronchoscope inserted.
Arterial oxygen saturation during bronchography via the fibreoptic bronchoscope
Effects of bilateral bronchography on pulmonary function

Maximum falls in Sao₂ (%) below baseline values

<table>
<thead>
<tr>
<th>No</th>
<th>Age (y)</th>
<th>Sex</th>
<th>Baseline Sao₂ (%)</th>
<th>After introduction of bronchoscope</th>
<th>After unilateral contrast</th>
<th>After bilateral contrast</th>
<th>Time (h) to regain baseline Sao₂</th>
<th>FEV₁ after bronchography (% baseline)</th>
<th>FVC after bronchography (% baseline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>F</td>
<td>98</td>
<td>6</td>
<td>30</td>
<td>34</td>
<td>1</td>
<td>58</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>M</td>
<td>99</td>
<td>8</td>
<td>17</td>
<td>23</td>
<td>3*</td>
<td>39</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>M</td>
<td>98</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>59</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>38</td>
<td>M</td>
<td>96</td>
<td>6</td>
<td>11</td>
<td>14</td>
<td>1</td>
<td>49</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>F</td>
<td>97</td>
<td>11</td>
<td>8</td>
<td>19</td>
<td>3*</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
<td>M</td>
<td>95</td>
<td>3</td>
<td>9</td>
<td>13</td>
<td>3*</td>
<td>49</td>
<td>53</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>F</td>
<td>97</td>
<td>4</td>
<td>12</td>
<td>19</td>
<td>3*</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>56</td>
<td>M</td>
<td>96</td>
<td>3</td>
<td>8</td>
<td>35</td>
<td>1</td>
<td>42</td>
<td>44</td>
</tr>
</tbody>
</table>

*Desaturated at 3 hours when recordings ceased.

Sao₂—arterial oxygen saturation; FEV₁—forced expiratory volume in one second; FVC—forced vital capacity.

Results

The baseline Sao₂ in these patients was 95–99%. Before bronchography the spirometric values were in seven of the eight were within the predicted normal range. Patient 6 had an FEV₁ of 83% predicted and a forced vital capacity (FVC) of 70% predicted. The figure shows a record of Sao₂ for one of the patients; the data for all eight are shown in the table. The fall in Sao₂ after bilateral injection of contrast ranged from 8% to 35%, with a mean (SD) of 20·5% (9·5%). These episodes were brief and Sao₂ improved by 50% of the total fall over a period of 1–10 (mean 4) minutes. The time necessary to regain baseline Sao₂, however, was more than three hours in four of the patients. Both FEV₁ and FVC dropped to about half of their baseline levels one hour after bronchography. A diagnosis of bronchiectasis was made in patients 1, 3, and 5; the remainder had clinical evidence of chronic bronchial sepsis without bronchiectasis. The effect of the procedure on Sao₂ was similar regardless of diagnosis.

Discussion

We have shown that injection of contrast medium into each side of the bronchial tree has a cumulative effect on Sao₂. In the eight patients studied unilateral injection caused a mean desaturation of 12·5% and bilateral injection a mean of 20·5%. Motley and Tomashefski studied 25 patients undergoing bilateral bronchography with an oily contrast medium via a nasotracheal catheter, and found a mean drop in Sao₂ of 8%. We would suggest that our figure of 20·5% desaturation after bronchography via the fibreoptic instrument was due either to the physical presence of the bronchoscope within the bronchi or to a difference in the properties of oily and aqueous contrast media. In this study bronchography resulted in decreases in FEV₁ and FVC by around 50% one hour after the procedure. Zavod described a 35% drop in FEV₁ one hour after bilateral bronchography while Christiforidis et al. found a drop of 33% in FVC; they both, however, used oily contrast medium injected via nasotracheal catheter.

The average fall in Sao₂ of 20% in our patients with normal baseline levels represents a mean fall in arterial oxygen tension from 12·2 to 5·4 kPa, on the assumption of a normal oxygen dissociation curve and a pH of 7·4. We therefore recommend that arterial blood gas tensions are measured before this type of bronchography is performed. In the presence of preoperative hypoxaemia the procedure is contraindicated and a limited approach should be considered. Those submitted to the full procedure should receive continuous oxygen treatment.

References

1 Jones DK, Cavanagh P, Shneerson JM. Flower CDR. Does bronchoscopy have a role in the assessment of patients with haemoptysis? Thorax 1985;40:668–70.
Arterial oxygen saturation during bronchography via the fibreoptic bronchoscope.

J M Goldman, D C Currie, A D Morgan and J V Collins

Thorax 1987 42: 694-695
doi: 10.1136/thx.42.9.694

Updated information and services can be found at:
http://thorax.bmj.com/content/42/9/694.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/