Interpretation of negative results in fine needle aspiration of discrete pulmonary lesions

A J WINNING, J McIVOR, W A SEED, O A N HUSAIN, N METAXAS

From the Departments of Medicine, Radiology, and Cytology, Charing Cross Hospital, London

ABSTRACT A retrospective analysis was carried out on a consecutive series of 181 percutaneous fine needle aspiration biopsies of discrete pulmonary lesions, in which the outcome was established in 95%. In primary bronchial carcinoma the technique had a sensitivity of 86%. There was no relationship between the size, location, or radiological appearance of the lesion and the incidence of false negative results. The principal reason for failure to diagnose malignancy was inadequacy of the material provided for cytological examination. For metastatic neoplasms of non-bronchial origin the procedure had a sensitivity of 42% and a significantly greater false negative rate than for primary bronchial malignancy. For the entire series 72 (40%) of the procedures failed to produce a definite diagnosis, 29 (40%) of these cases subsequently proving to be malignant. A positive diagnosis was established in only 16% of patients with benign conditions. Review of published reports and consideration of the role of this and other biopsy techniques in the investigation of discrete pulmonary lesions lead to the conclusion that needle aspiration biopsy seems particularly appropriate in the investigation of inoperable patients with probable bronchial carcinoma in whom sputum cytology and bronchoscopy do not yield a diagnosis.

We have reviewed published reports on percutaneous needle aspiration biopsy of discrete pulmonary lesions to establish the sensitivity of the method in the diagnosis of carcinoma. In those studies where sufficient data are provided, sensitivity (defined as true positive results expressed as a percentage of true positive and false negative results, in patients confirmed by other means to have carcinoma) varied from 77% to 90%.1–7 A very high proportion of the lesions were primary bronchial carcinomas.

While several of these studies have addressed themselves to the reasons for false negative results in bronchial carcinoma, few have defined the precise role of the method in the investigation of discrete lung lesions. In a consecutive series of needle aspiration biopsies with an overall sensitivity of 77% for carcinoma, we have examined the reasons for false negative results in the diagnosis of bronchial carcinoma. The sensitivity for this diagnosis in our series was 86%. To determine the overall usefulness of the method, we have analysed the whole series and formulated a policy with regard to needle aspiration biopsy in the management of discrete pulmonary lesions.

Methods

PATIENTS AND DIAGNOSTIC CRITERIA
A consecutive series of 181 needle biopsy procedures, 100 of which were in patients later proved to have carcinoma of the bronchus, was examined retrospectively. We identified 14 negative results from patients with bronchial carcinoma.

The diagnosis of malignancy was based on the following criteria: (a) histological proof of malignancy at surgical biopsy or necropsy; (b) progressive deterioration to death without other cause, or with growth of the primary lesion or metastatic spread of the tumour documented by a radiological or radionuclide imaging technique; (c) unequivocal reduction in size of primary or secondary lesions documented by radiography or computed tomography after radiotherapy or cytotoxic chemotherapy or both.

Patients were classified as having carcinoma of the bronchus only in the absence of previous malignancy or of an alternative primary lesion at presentation or subsequently.

A diagnosis of carcinoma was excluded by a positive microbiological diagnosis or non-malignant histological diagnosis for the lesion in question, absence of malignancy at necropsy, or clear radiological resolution of the primary pulmonary lesion with clinical
recovery maintained for at least 12 months without radiotherapy or cytotoxic chemotherapy.

ASPIRATION PROCEDURE
Aspiration was carried out with a 15 cm thin walled 22 gauge Chiba needle and single plane fluoroscopy. The position of the lesion was determined radiologically before aspiration, and accurate placement of the aspiration needle was confirmed during the procedure by radiological demonstration that the needle tip moved and coincided with the lesion during deep breathing. Aspiration was undertaken three or more times from different parts of the lesion. If the initial samples were excessively blood stained, extra samples were obtained. An expiration chest film was taken 15 minutes after the procedure and was checked for pneumothorax.

SMEARS
Smears were rapidly either wet fixed in alcohol for the Papanicolaou stain or air dried for staining by the May-Grunwald Giemsa technique. Needles were washed out in buffered saline solution and the cell suspensions were collected on to millipore membranes and stained by the Papanicolaou and other techniques.

The smear reports were graded as follows: grade I—benign cells only; II—reactive but benign cells (hyperplastic or inflammatory); III—atypical cells that are suspect but ambiguous; neoplasia not confidently excluded; III—evidence very strongly suggestive of neoplasia, which warrants repeat biopsy if a positive diagnosis is not forthcoming by other means; IV—unequivocally malignant. The prefix O indicated a specimen providing insufficient cellular material or consisting largely of blood or necrotic debris. Only grade IV was accepted as unequivocally diagnostic of malignancy for clinical purposes.

This classification was used throughout the study, and all the results are based on the original, not retrospective, smear reports.

Table 1 Results of needle aspiration biopsy from the consecutive series of procedures

<table>
<thead>
<tr>
<th>Lesion</th>
<th>No (%) of procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronchial carcinoma</td>
<td>100 (55.2)</td>
</tr>
<tr>
<td>True positive</td>
<td>86</td>
</tr>
<tr>
<td>False negative</td>
<td>14</td>
</tr>
<tr>
<td>False positive</td>
<td>0</td>
</tr>
<tr>
<td>Primary neoplasms of non-bronchial origin</td>
<td>26 (14.4)</td>
</tr>
<tr>
<td>True positive</td>
<td>11</td>
</tr>
<tr>
<td>False negative</td>
<td>15</td>
</tr>
<tr>
<td>False positive</td>
<td>0</td>
</tr>
<tr>
<td>True negative diagnosis (eg infection)</td>
<td>39 (21.5)</td>
</tr>
<tr>
<td>Lesion not entered owing to overlying tissue</td>
<td>31 (17)</td>
</tr>
<tr>
<td>Procedures in patients lost to follow up</td>
<td>9 (5.0)</td>
</tr>
<tr>
<td>Specimens sent for microbiological examinations alone</td>
<td>4 (2.2)</td>
</tr>
<tr>
<td>Total</td>
<td>181 (100)</td>
</tr>
</tbody>
</table>

Table 2 Analysis of false negative aspirations in bronchial carcinomas

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Cytology grade*</th>
<th>Outcome or histology†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small cell carcinoma</td>
<td>O/I</td>
<td>Death 4 months, cerebral metastases</td>
</tr>
<tr>
<td>Large cell carcinoma</td>
<td>O/I</td>
<td>Death 12 months, vocal cord palsy</td>
</tr>
<tr>
<td>Death 4 months, cerebral metastases</td>
<td>O/I/III</td>
<td>Death 10 months, carcinomatosis</td>
</tr>
<tr>
<td>Death 12 months, vocal cord palsy</td>
<td>O/III</td>
<td>Death 3 months, rib metastases</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>I</td>
<td>Bronchial alveolar carcinoma</td>
</tr>
<tr>
<td>Death 11 months, rib metastases</td>
<td>IIR</td>
<td>Bronchial alveolar carcinoma</td>
</tr>
<tr>
<td>Bronchial alveolar carcinoma</td>
<td>III</td>
<td>Squamous cell carcinoma</td>
</tr>
<tr>
<td>Death 8 months, progressive radiographic change</td>
<td>IIIR</td>
<td>Adenosquamous carcinoma</td>
</tr>
</tbody>
</table>

*See under "Smears."
†World Health Organisation classification.
Interpretation of negative results in fine needle aspiration of discrete pulmonary lesions

Table 3 Comparison of aspirations resulting in true positive and false negative diagnoses of bronchial carcinoma. (Values are means with standard deviations in parentheses)

<table>
<thead>
<tr>
<th>Patient</th>
<th>True positive</th>
<th>False negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>68.4(7.8)</td>
<td>67.6(5.7)</td>
</tr>
<tr>
<td>Male:female</td>
<td>1:7:1</td>
<td>1:8:1</td>
</tr>
<tr>
<td>Lesion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter (cm)</td>
<td>4.6(2.3)*</td>
<td>3.9(2.3)*</td>
</tr>
<tr>
<td>Depth from skin (cm)</td>
<td>5.8(2.2)*</td>
<td>5.9(1.9)*</td>
</tr>
<tr>
<td>Cavitation</td>
<td>23/86(27%)†</td>
<td>3/14(21%)†</td>
</tr>
</tbody>
</table>

*Difference between true positives and false negatives not significant (p > 0.05) in an unpaired t-test.
†Difference between true positive and false negatives not significant (p > 0.05) in a χ² test.

Discussion

The results show that, with standard methods of localising lesions and aspiration, our use of fine needle aspiration achieved a sensitivity in diagnosing bronchial carcinoma very similar to that reported in other series.1-7 We can therefore expect the analysis of our false negative results to have relevance to the technique as practised in other centres.

Table 3 shows that the false negative diagnoses are not attributable to differences in the size, location within the lung, or radiological appearance of the aspirated lesions. Diagnostic yield did not significantly diminish in centrally located small lesions, as has previously been suggested,9 nor did the presence of cavitation in a lesion make a false negative result more likely.

The principal reason for failure to diagnose malignancy lies in inadequacy of the specimens. Seven of our 14 false negative results were obtained with material regarded as inadequate for cytological diagnosis. Four of the aspirates were mainly blood, two comprised minimal material, and one consisted solely of necrotic debris. In each case this occurred even though aspiration was repeated three or more times from different parts of the lesion until apparently adequate material had been obtained. We believe that this reflects an inherent limitation of the technique since it is not due to differences in the lesions.

We do not propose to comment on the sensitivity of the technique for individual types of non-bronchial neoplasm, since the small numbers and histological variety make comment on the sensitivity of the technique for individual types of tumour unreliable. The important finding for this group overall was the significantly higher false negative rate for non-bronchial than for primary bronchial malignancy (15/26 versus 14/100; p < 0.001). Authors reporting on larger series have similarly found the sensitivity of aspiration biopsy to be lower in the diagnosis of non-bronchial malignancies, but to vary considerably between lesions of different origins.1 3 10

Our observations on false negative results in bronchial and non-bronchial malignancy have a bearing on the problem of how to deal with negative results from this technique and the place of needle aspiration biopsy in the management of discrete pulmonary

Reference

1. Authors reporting on larger series have similarly found the sensitivity of aspiration biopsy to be lower in the diagnosis of non-bronchial malignancies, but to vary considerably between lesions of different origins.1 3 10

2. The results show that, with standard methods of localising lesions and aspiration, our use of fine needle aspiration achieved a sensitivity in diagnosing bronchial carcinoma very similar to that reported in other series.1-7 We can therefore expect the analysis of our false negative results to have relevance to the technique as practised in other centres.

3. Table 3 shows that the false negative diagnoses are not attributable to differences in the size, location within the lung, or radiological appearance of the aspirated lesions. Diagnostic yield did not significantly diminish in centrally located small lesions, as has previously been suggested,9 nor did the presence of cavitation in a lesion make a false negative result more likely.

4. The principal reason for failure to diagnose malignancy lies in inadequacy of the specimens. Seven of our 14 false negative results were obtained with material regarded as inadequate for cytological diagnosis. Four of the aspirates were mainly blood, two comprised minimal material, and one consisted solely of necrotic debris. In each case this occurred even though aspiration was repeated three or more times from different parts of the lesion until apparently adequate material had been obtained. We believe that this reflects an inherent limitation of the technique since it is not due to differences in the lesions.

5. We do not propose to comment on the sensitivity of the technique for individual types of non-bronchial neoplasm, since the small numbers and histological variety make comment on the sensitivity of the technique for individual types of tumour unreliable. The important finding for this group overall was the significantly higher false negative rate for non-bronchial than for primary bronchial malignancy (15/26 versus 14/100; p < 0.001). Authors reporting on larger series have similarly found the sensitivity of aspiration biopsy to be lower in the diagnosis of non-bronchial malignancies, but to vary considerably between lesions of different origins.1 3 10

6. Our observations on false negative results in bronchial and non-bronchial malignancy have a bearing on the problem of how to deal with negative results from this technique and the place of needle aspiration biopsy in the management of discrete pulmonary
lesions. The 72 negative results represented 40% of the present series, and 29 (40%) of these subsequently proved malignant. A similar risk of error can be found in other series.1 4 6 7 11

Aspiration biopsy is usually performed for the investigation of an opacity on a chest radiograph when sputum investigations and bronchoscopy do not provide a diagnosis. We believe that it is principally applicable in patients presenting with a single discrete pulmonary opacity that is inoperable for any reason. Operable lesions, unless there are strong grounds for believing them benign, should be managed by thoracotomy and resection without prior aspiration biopsy. In those patients who prove to have malignancy such lesions will be resected anyway and a negative result has a substantial risk of error. In the patient who is inoperable, however, our experience, supported by that of others, suggests the following role for needle aspiration biopsy. If it is thought possible that the lesion is a primary bronchial carcinoma aspiration biopsy should be performed. It has a high sensitivity and a positive result has had a 100% predictive value (no false positive results) in the present and other series.3 5 7 11 In view of the high sensitivity of the technique and the low morbidity12 associated with it, repeat aspiration is advisable where the initial aspirate is inadequate. It is also very desirable in all other negative cases, particularly when the first aspirate contains ambiguous or suspicious cells (grade IIR or III in our classification). These two criteria alone encompass 12 of our 14 false negative results (table 2). In theory, repeat aspiration with an 86% sensitivity would be expected to yield 98% sensitivity overall for carcinoma, leaving only 2% of patients with bronchial carcinoma undiagnosed. This specific point was not addressed in the present series, in which the procedure was repeated in only two cases. Published reports make it clear, however, that although repeat aspiration in negative cases increases the yield it has a lower sensitivity (35–38%) than the initial aspiration.2 6 13 Thus for patients in whom two aspiration procedures have given negative results the technique has little more to offer.

There is a further group of inoperable patients, in whom the pulmonary lesion is clinically thought unlikely to be a primary bronchial neoplasm. In the present series this included patients with pre-existing malignancy of non-bronchial origin and patients with a high probability of benign (for example, infective) lesions. Needle aspiration biopsy has less to offer in this group. In the present series the technique had a sensitivity of 42% (11/26) in malignant lesions of non-bronchial origin and 16% (7/43) in benign conditions. The results for both these types of lesion are similar to those obtained in other series.1 3 10 Alternative techniques include bronchoscopic transbronchial lung biopsy under fluoroscopic control14 15 and percutaneous Trucut needle biopsy.16 Both techniques have a higher yield with benign lesions than needle aspiration biopsy. The fibroptic technique is probably not superior to needle aspiration in non-bronchial malignancies, but very limited experience with Trucut biopsy is encouraging. This latter technique, however, is less useful for lesions below 2 cm in diameter,16–18 causes appreciable morbidity with more deeply placed lesions,16 19 20 and requires considerable expertise for its safe use.

We conclude that needle aspiration biopsy of discrete pulmonary lesions is a highly sensitive technique for the diagnosis of primary bronchial carcinoma. It produces lower diagnostic yields in patients with metastases from non-bronchial neoplasms and with benign disease. It is particularly appropriate for use in inoperable patients in whom the pulmonary lesion is likely to be primary bronchial carcinoma.

We are grateful to Dr Bernard Fox for review of some histological material, and to Miss Katy Ferguson for expert typing of the manuscript.

References
Interpretation of negative results in fine needle aspiration of discrete pulmonary lesions

Interpretation of negative results in fine needle aspiration of discrete pulmonary lesions.

A J Winning, J McIvor, W A Seed, O A Husain and N Metaxas

Thorax 1986 41: 875-879
doi: 10.1136/thx.41.11.875

Updated information and services can be found at:
http://thorax.bmj.com/content/41/11/875

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/