Indium 111 autologous leucocyte scanning in lobar pneumonia and lung abscesses

SETHNA H SAVERYMUTTU, GARETH PHILLIPS, A MICHAEL PETERS, J PETER LAVENDER

From the Departments of Medicine and Diagnostic Radiology, Royal Postgraduate Medical School, Hammersmith Hospital, London

ABSTRACT Indium 111 leucocyte scanning was used to examine the kinetics of granulocyte localisation in five patients with lobar pneumonia and four patients with lung abscess. Lung abscesses showed dense accumulation of labelled granulocytes within four hours of injection. In contrast, in all cases of lobar pneumonia granulocytes failed to accumulate over a period of up to 24 hours despite evidence of adequate perfusion and of uptake in inflammation elsewhere. These results suggest that the recruitment of granulocytes to lobar pneumonia may be terminated early in its clinical course.

Indium 111 (111In) autologous leucocyte scanning has been extensively used for localisation of intra-abdominal abscesses.12 More recently the potential for studying other conditions with an inflammatory component has been developed. For instance, the technique has been used to demonstrate the kinetics of labelled leucocytes in inflamed bowel. After injection 111In labelled leucocytes migrate to and accumulate in diseased bowel within a matter of minutes, pass into the bowel lumen over the following few hours, and are subsequently excreted over the next four days.$^{3–6}$

Address for reprint requests: Dr SHS Saverymuttu, Medicine II, St George's Hospital Medical School, London SW17B.

Accepted 24 June 1985

Table 1 Details of the patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (y)</th>
<th>Diagnosis</th>
<th>Associated condition</th>
<th>Sputum culture</th>
<th>Sputum leucocytes</th>
<th>White cell count ($\times 10^5/l$)</th>
<th>Duration (days) before scan</th>
<th>Treatment</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68</td>
<td>Lung abscess</td>
<td>Diabetes</td>
<td>Proteus</td>
<td>+</td>
<td>11</td>
<td>10</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>57</td>
<td>Lung abscess</td>
<td>Renal failure</td>
<td>Klebsiella</td>
<td>+</td>
<td>17.6</td>
<td>12</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>71</td>
<td>Lung abscess</td>
<td>Bronchogenic carcinoma</td>
<td>E coli</td>
<td>+</td>
<td>10.6</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>78</td>
<td>Lung abscess</td>
<td>—</td>
<td>E coli</td>
<td>+</td>
<td>14.5</td>
<td>1</td>
<td>8</td>
<td>Indefinite: vague symptoms of malaise 2 weeks</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>Lobar pneumonia</td>
<td>—</td>
<td>Strep</td>
<td>pneumoniae</td>
<td>24</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>Lobar pneumonia</td>
<td>—</td>
<td>Strep</td>
<td>pneumoniae</td>
<td>18.6</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td>Lobar pneumonia</td>
<td>—</td>
<td>Strep</td>
<td>pneumoniae</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>71</td>
<td>Lobar pneumonia</td>
<td>Chronic</td>
<td>Normal flora</td>
<td>+</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>Indefinite: vague symptoms of malaise 4 weeks</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>Lobar pneumonia</td>
<td>Post-operative</td>
<td>—</td>
<td></td>
<td>9.2</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Unlike an intra-abdominal abscess, but like bowel, the parenchyma of the lung provides a portal of exit for granulocytes when it is inflamed. This is reflected by the presence of granulocytes in sputum, analogous to faecal granulocytes in inflammatory bowel disease. The aim of this study therefore was to examine the kinetics of granulocyte localisation in lobar pneumonia and in lung abscess to see how far they resembled or differed from the kinetics in inflammatory bowel disease.

Method

Nine patients were studied, five with lobar pneumonia and four with lung abscess. The clinical details are
Table 2 Radiological features and detection of indium 111 in patients with lung abscess and patients with pneumonia

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Radiological site of abscess or pneumonia</th>
<th>Time after injection of (^{111})In granulocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>40 min</td>
</tr>
<tr>
<td>Abscess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>R middle lobe</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R middle lobe</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>R lower and middle lobes</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>L lower lobe</td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R upper lobe</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R middle lobe</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R middle lobe</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>R middle lobe</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>L lower lobe</td>
<td></td>
</tr>
</tbody>
</table>

R—right; L—left; ND—not done; + indicates radioactivity present and – radioactivity absent.

Results

The scanning and radiological findings are summarised in Table 2. In the four patients with lung abscesses, who were studied one to 12 days after continuous treatment with antibiotics, the chest radiograph showed evidence of cavitation (Fig 1). Early scans were performed 40 minutes after return of the labelled granulocytes in two of the four patients. In one a focal area of increased activity corresponding to the site of the abscess was seen, while in the other the scan was normal. In all four patients later scans three to four hours and 24 hours after the return of the cells, were clearly positive over the abscess site (Fig 2). Abdominal scans at 24 hours showed activity in the large bowel in three of the four, representing swallowed labelled granulocytes. Three of the four

![Fig 1](http://thorax.bmj.com/)

(a) Patient 2: Anteroposterior and (b) lateral chest radiographs showed a multiloculated abscess in the right lower lobe.
abscesses resolved with antibiotic treatment; the remaining patient died but necropsy was not performed. No repeat studies were performed.

All five cases of lobar pneumonia showed characteristic radiological changes (fig 3). *Streptococcus pneumoniae* was the cause in three patients. No organism was isolated in the other two. The patients were studied one to 13 days after the start of antibiotic treatment, when all except one had leucocytes in the sputum. Scans were negative at the site of the pneumonia in all five cases at all times (fig 4). Furthermore, apart from splenic uptake and uptake in an infected
surgical wound in case 9, no abdominal activity was seen. All five patients showed progressive radiological clearance from the time of scanning.

In patient 9 the pneumonia developed six days post operatively. This patient had been on routine peri-operative antibiotics during that period and this might explain the failure to detect an organism. There was no evidence to suggest an alternative explanation for the consolidation and the patient’s condition improved with antibiotics and physiotherapy alone.

On dynamic imaging in the two patients with abscess, the time-activity curves recorded over the abscess regions were similar in shape to those recorded over unaffected lung up to about 20 minutes after injection of granulocytes labelled with indium 111, although the count rate per pixel was less over the abscess (with abnormal:normal ratios one minute after injection of 0.59 and 0.32). From 20 minutes, however, the count rate over the abscess increased (fig 5). In the three patients with pneumonia who underwent dynamic imaging the initial count rate per pixel was again less over the affected region (with abnormal:normal ratios at one minute of 0.71, 0.7 and 0.66) (fig 6). In contrast to the findings in lung abscess, however, the count rate over consolidated lung showed no subsequent tendency to increase in relation to the normal region.

Discussion

The finding that 111In labelled granulocytes fail to
Indium 111 autologous leucocyte scanning in lobar pneumonia and lung abscesses

Secondly, there may be appreciable impairment of perfusion, thereby limiting vascular access. Results of ventilation—perfusion scanning suggest, however, that there is adequate, though reduced, perfusion of consolidated lobes. Furthermore, the immediate signals from \(^{111}\)In labelled granulocyte achieved with dynamic imaging indicated that, although inflow was reduced in the affected regions, it was clearly not decreased sufficiently to produce any appreciable reduction in vascular access, and indeed not reduced to any greater extent than inflow into the abscess. Thirdly, although all patients with lobar pneumonia were receiving antibiotic treatment, previous studies have shown that this does not prevent localisation of \(^{111}\)In labelled granulocytes in inflammatory sites. Indeed, all of the patients with lung abscess were scanned while receiving antibiotic treatment.

A further possible explanation for these negative scans in lobar pneumonia is that recruitment of fresh leucocytes might have ceased before the injection of labelled granulocytes and that, whatever the intravascular kinetics of granulocytes, there was no extravascular granulocyte migration after this time. The presence of sputum leucocytes at the time of scanning is difficult to reconcile with this, in view of the short intravascular half life of granulocytes approximately about seven hours, and suggests that granulocytes have a considerable postmigration life span and that they are capable of remaining viable in lung parenchyma for some time. Evidence to support this implication has been lacking until recently, when Buescher et al\(^{15}\) were able to study granulocyte life span in a patient with chronic granulomatous disease receiving leucocyte transfusions for a chest infection. They showed that granulocytes were present in sputum for at least 42 hours after their disappearance from the blood. This suggests that granulocytes can be present in sputum for an appreciable time after the termination of granulocyte recruitment into an infective chest lesion.

We suggest that this last explanation is the most likely. Unlike other inflammatory conditions studied with \(^{111}\)In granulocytes, in lobar pneumonia there is no breakdown of tissue architecture and it is possible that the alveolar air spaces become filled with exudate soon after the onset of infection, so that further granulocytes are unable to gain access and recruitment ceases. The mechanism of cessation of recruitment could be mechanical but seems more likely to be due to biological factors. Uptake of \(^{111}\)In granulocytes into lobar pneumonia has been recorded in the dog within 24 hours of its induction.\(^{16}\) This stage of active granulocyte recruitment was probably completed in our cases before imaging. Indeed, in at least two patients with white cells were injected within 48 hours of the onset of pneumonia, suggesting that...
recruitment is terminated before this. Such a limited period of recruitment in lobar pneumonia may be contrasted with lung abscess, in which granulocyte migration into the septic focus continues pari passu with tissue destruction.

We are grateful to Miss Sally Barnes for typing this manuscript and to Miss Belinda Henderson and Miss Penny George for technical assistance.

References

Indium 111 autologous leucocyte scanning in lobar pneumonia and lung abscesses.
S H Saverymuttu, G Phillips, A M Peters and J P Lavender

Thorax 1985 40: 925-930
doi: 10.1136/thx.40.12.925

Updated information and services can be found at:
http://thorax.bmj.com/content/40/12/925

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/