Amiodarone pneumonitis: three further cases with a review of published reports

JI DARMANATA, N van ZANDWIJK, DR DÜREN, EA van ROYEN, WJ MOOI, TA PLOMP, HM JANSEN, D DURRER

From the Departments of Cardiology and Clinical Physiology, Pulmonary Diseases, Nuclear Medicine, and Pathology, University Hospital, Wilhelmina Gasthuis, Amsterdam, and the Centre for Human Toxicology, University of Utrecht, The Netherlands

ABSTRACT Three further patients are presented who developed evidence of a parenchymal pulmonary disturbance in the course of treatment with amiodarone. In one case the progress of the condition was rapid and ended fatally. Histological examination of the lungs showed evidence of diffuse alveolar damage. The concentration of amiodarone was from four to seven times higher in the lungs than in other organs studied. The concentration of the metabolite desethylamiodarone in the lungs was even higher in relation to other organs studied. The remaining two patients showed a more insidious onset and improvement after withdrawal of amiodarone and treatment with corticosteroids. Gallium 67 scintigraphy appeared to be a sensitive indicator of this adverse effect. Review of published reports revealed 35 cases of amiodarone pneumonitis, including the cases reported in this study. In 11 instances the dose of amiodarone was 400 mg or less. The onset was either insidious or rapidly progressive. Exertional dyspnoea was always present and a non-productive cough, hypoxaemia, a raised erythrocyte sedimentation rate and diminished carbon monoxide diffusing capacity (transfer factor) were usually noted. Chest radiographs showed either a reticular pattern or diffuse patchy alveolar infiltrates. Discontinuation of amiodarone and an institution of corticosteroid treatment was usually followed by improvement or resolution.

Amiodarone hydrochloride, a benzofuran derivative, was first introduced in Europe in 1967 for the treatment of angina pectoris. Later it was found to possess unique antiarrhythmic properties, particularly in association with the Wolff-Parkinson-White syndrome. Although corneal microdeposits, bluish skin discoloration, photosensitisation, transient increases in liver enzymes, and altered thyroid function became recognised in the 1970s, attention has been only recently drawn to the association of pulmonary infiltrates with amiodarone treatment.

In the two years since we reported our first patient we have seen three further cases of amiodarone pneumonitis. The present report describes these three patients and reviews the published reports.

Address for reprint requests: Dr JI Darmanata, Department of Cardiology (Room C2-432), Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.

Accepted 17 October 1983

Case reports

PATIENT 1
A 68 year old man received amiodarone treatment for refractory ventricular tachycardia appearing two weeks after acute myocardial infarction. A loading dose of 600 mg was given on the first day followed by 200 mg daily five days a week. Three weeks after starting treatment he experienced increasing dyspnoea on exertion and developed a non-productive cough. Serial chest radiographs showed the rapid development of bilateral alveolar infiltrates and a right pleural effusion (fig 1). Seven weeks after starting treatment he was transferred to our hospital. On examination we found a dyspnoeic elderly man with a normal temperature. Crackles were audible at both bases. Radionuclide angiography showed a dilated and poorly contracting left ventricle. The erythrocyte sedimentation rate was 50 mm in one hour. The leucocyte count was 6.1 × 10⁹/l with 1% eosinophils. Microbiological investigation and a test for antinuclear antibody were negative. Immuno-
globulin concentrations and complement profile were normal. Arterial blood gases during the breathing of room air showed hypoxaemia (pH 7.47, Paco₂ 28 mm Hg (3.7 kPa), Pao₂ 70 mm Hg (9.3 kPa)). Despite withdrawal of amiodarone and initiation of treatment with diuretics and prednisolone, his condition rapidly deteriorated. He died two weeks after cessation of amiodarone treatment. Histological examination of lung tissue obtained at necropsy showed various stages of diffuse alveolar damage, with hyperplasia of type II pneumocytes, hyaline membrane formation, organisation of alveolar exudate, interstitial mononuclear inflammation, and fibrosis (fig 2). Tissue concentrations of amiodarone and its metabolite desethylamiodarone were determined in several organs (table 1). The amiodarone concentration in the lung tissue exceeded that of the heart and kidney by a factor of almost 10. Measurements of desethylamiodarone showed that the lungs had even higher concentrations in relation to other organs.

PATIENT 2
In 1981 a 55 year old man underwent coronary artery surgery for intractable angina pectoris. Two grafts were implanted on the left coronary artery. The following year he suffered an acute inferior myocardial infarction. Amiodarone 200 mg daily was prescribed for mild angina pectoris. The dose was later increased to 600 mg because of persistent angina. After one month of treatment with this dose he developed increasing exertional dyspnoea and a non-productive cough with a normal temperature. The patient was admitted to hospital and amiodarone treatment was stopped after a total of nine weeks of treatment. On examination he was afebrile and crackles were audible at the left base. The chest radiograph showed an area of “ground glass” shadowing in the right lower lobe. The erythrocyte sedimentation rate was 83 mm in one hour and the leucocyte count was 10-2 × 10⁹/l with 7% eosinophils. Microbiological investigation and immunological tests gave negative results. The arterial blood gases during the breathing of room air had a pH of 7.38, a Paco₂ of 36 mm Hg (4.8 kPa), and a Pao₂ of 65 mm Hg (8.6 kPa). Pulmonary function tests showed that lung volumes were within normal limits. Carbon monoxide diffusing capacity was 40% of the predicted value. Gallium 67 scintigraphy showed intense diffuse uptake in both lungs (fig 3). In the three weeks that followed, dyspnoea persisted although the changes in the chest radiograph virtually resolved. Diffusing capacity decreased further to 27% of predicted normal and arterial Pao₂ to 50 mm Hg (6.7 kPa). His condition improved dramatically after starting treatment with prednisolone 40 mg daily (fig 4A). Although pulmonary diffusing capacity did not reach normal values, the chest radiograph and gallium 67 scintigraphy appearances returned to normal within three weeks. After two months the dose of prednisolone was lowered to 30 mg daily; but dyspnoea recurred and again pathological accumulation of gallium 67 was found, although the chest radiograph remained clear.

PATIENT 3
A 69 year old man was treated with amiodarone 300 mg daily because of angina pectoris. After two months of treatment he experienced mild exertional dyspnoea. Pulmonary function tests gave normal results. A year later the chest radiograph appeared normal. After two years of treatment he was admitted to hospital with considerable exertional dyspnoea, non-productive cough, transient fever, abdominal discomfort, and weight loss. On examina-

Table 1 Postmortem tissue concentrations (means with standard deviations in parentheses) of amiodarone and desethylamiodarone in patient 1

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Amiodarone concentration (µg/g)</th>
<th>Desethylamiodarone concentration (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>28(7)</td>
<td>238(59)</td>
</tr>
<tr>
<td>Liver</td>
<td>7(1)</td>
<td>64(6)</td>
</tr>
<tr>
<td>Kidney</td>
<td>30(3-3)</td>
<td>19(2)</td>
</tr>
<tr>
<td>Heart</td>
<td>4(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>Thyroid gland</td>
<td>3(1)</td>
<td>13(1)</td>
</tr>
</tbody>
</table>

Fig 1 Radiographic changes in a patient with amiodarone induced pulmonary abnormality: patient 1 (seven weeks after amiodarone was given)—diffuse bilateral alveolar infiltrates and right pleural effusion.
Amiodarone pneumonitis: three further cases with a review of published reports

Fig 2 Histological appearances of lung tissue obtained at necropsy from patient 1 showing diffuse alveolar damage in both early and later stages: (a) and (b) the early stage showing interstitial and intraalveolar oedema, formation of hyaline membrane (H), and hyperplasia of type II pneumocytes (P); (c) later stage showing organisation of exudate, with the formation of loose fibrous tissue (F) and interstitial inflammation and fibrosis. (Haematoxylin and eosin; (a) × 90; (b) and (c) × 140.)
Table 2 Summary of new and previously reported patients with amiodarone pneumonitis

<table>
<thead>
<tr>
<th>Case No</th>
<th>Age (y) and sex</th>
<th>Amiodarone Dose (mg/d)</th>
<th>Amiodarone Duration (m)</th>
<th>Chest radiograph</th>
<th>Laboratory findings</th>
<th>Histology</th>
<th>Treatment</th>
<th>Outcome on withdrawal of amiodarone</th>
<th>Ref No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 M</td>
<td>400</td>
<td>1</td>
<td>A, B</td>
<td>ESR†, PO2↓, LVoL↓, PCWP n, PVTr</td>
<td>—</td>
<td>Co</td>
<td>CXR normal in 10 d</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>69 M</td>
<td>400</td>
<td>1-5</td>
<td>B</td>
<td>ESR†, PO2↓, LVoL↓, PCWP↓, TLoCO↓</td>
<td>—</td>
<td>Co</td>
<td>TLCo↑, in 24 d</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>67 M</td>
<td>800</td>
<td>6</td>
<td>B</td>
<td></td>
<td>+</td>
<td>Co</td>
<td>CXR almost normal in 5 m</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>56 M</td>
<td>600</td>
<td>1-5</td>
<td>A, B</td>
<td>PCWP n</td>
<td>+</td>
<td>Died 5 w after stopping Am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>61 M</td>
<td>600</td>
<td>2</td>
<td>B</td>
<td></td>
<td>+</td>
<td>Died 1 w after stopping Am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>55 M</td>
<td>600</td>
<td>7</td>
<td>A</td>
<td>WBC↑, LVoL n, TLoCO↓</td>
<td>+</td>
<td>Co</td>
<td>CXR clear in 1:5 m</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>40 F</td>
<td>800</td>
<td>4</td>
<td>B, D</td>
<td></td>
<td>—</td>
<td>Co</td>
<td>CXR normal in 1 m</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>67 M</td>
<td>600</td>
<td>2-5</td>
<td>A, B</td>
<td>PCWP n</td>
<td>—</td>
<td>Co</td>
<td>CXR virtually resolved in 3 m</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>71 M</td>
<td>400</td>
<td>12</td>
<td>B</td>
<td>ESR†, Hbi↓, PO2↓, LVoL↓, TLoCO↓</td>
<td>+</td>
<td>Co</td>
<td>CXR virtually clear in 2 m</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>55 M</td>
<td>800</td>
<td>8</td>
<td>A, C</td>
<td>ESR†, WBC↑, PO4↑, LVoL n, TLoCO↓</td>
<td>+</td>
<td>Died 2 w after stopping Am</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>44 M</td>
<td>800</td>
<td>9</td>
<td>A, B, C</td>
<td>ESR†, WBC↑, PO4↑, LVoL↑, TLoCO↑, PCWP n</td>
<td>+</td>
<td>Co</td>
<td>CXR resolved >3 m</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>67 M</td>
<td>600</td>
<td>6-5</td>
<td>A</td>
<td>ESR†, WBC↑, PO4↑, LVoL↑, TLoCO↑</td>
<td>+</td>
<td>Co</td>
<td>CXR resolved in 3 m</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>73 M</td>
<td>600/400</td>
<td>11</td>
<td>A, B</td>
<td>WBC n</td>
<td>—</td>
<td>Co</td>
<td>CXR to baseline >3 m</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>46 M</td>
<td>800</td>
<td>5</td>
<td>B, C</td>
<td></td>
<td>—</td>
<td>Co</td>
<td>Am restarted</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>56 F</td>
<td>800</td>
<td>7</td>
<td>A</td>
<td>ESR†, TLoCO↓</td>
<td>+</td>
<td>Co</td>
<td>CXR normal in 3-5 m</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>59 M</td>
<td>600</td>
<td>12</td>
<td>A, B</td>
<td>ESR†, PO4↑, LVoL n, TLoCO↓</td>
<td>+</td>
<td>Co</td>
<td>CXR clear in few weeks, rechallenge +</td>
<td>18</td>
</tr>
<tr>
<td>17</td>
<td>63 F</td>
<td>400</td>
<td>26</td>
<td>(5′w)</td>
<td></td>
<td>+</td>
<td>Died 11 d after stopping Am</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>57 M</td>
<td>600</td>
<td>12</td>
<td>(5′w)</td>
<td></td>
<td>+</td>
<td>Co</td>
<td>Improved, Am restarted</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>69 M</td>
<td>400</td>
<td>72</td>
<td>(5′w)</td>
<td></td>
<td>+</td>
<td>Co</td>
<td>Improved despite continuance of Am</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>75 M</td>
<td>200-400</td>
<td>36</td>
<td></td>
<td></td>
<td>+</td>
<td>Co</td>
<td>Died 4 d after withdrawal</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>61 M</td>
<td>400</td>
<td>24</td>
<td>(5′w)</td>
<td></td>
<td>+</td>
<td>Co</td>
<td>Died 4 d after withdrawal</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>75 M</td>
<td>200</td>
<td>7</td>
<td>B</td>
<td>PO4↑, LVoL↓, TLoCO↓</td>
<td>—</td>
<td>Co</td>
<td>CXR normal in 15 d</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>65 M</td>
<td>400</td>
<td>1</td>
<td>A</td>
<td>ESR n, PO4↓, LVoL↓, TLoCO↓, PCWP n</td>
<td>+</td>
<td>Co</td>
<td>TLoCO↑ in 2 w, cardiac arrest 2 m later</td>
<td>21</td>
</tr>
<tr>
<td>24</td>
<td>64 M</td>
<td>800/600</td>
<td>7</td>
<td>B</td>
<td></td>
<td>+</td>
<td>Co</td>
<td>Already on treatment with Co, CXR clear in 10 w</td>
<td>23</td>
</tr>
<tr>
<td>25</td>
<td>68 M</td>
<td>200</td>
<td>1-75</td>
<td>B</td>
<td>ESR†, PO4↓</td>
<td>+</td>
<td>Died 2 w after stopping Am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>55 M</td>
<td>600</td>
<td>2-25</td>
<td>A</td>
<td>ESR†, WBC↑, PO4↑, LVoL↑, TLoCO↑, Ga +</td>
<td>+</td>
<td>Co</td>
<td>CXR and Ga normal in 3 w</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>69 M</td>
<td>300</td>
<td>24</td>
<td>B</td>
<td>ESR†, PO4↑, LVoL↓, TLoCO↓</td>
<td>+</td>
<td>Co</td>
<td>TLoCO↑</td>
<td></td>
</tr>
</tbody>
</table>

Not included in the list as no details were available: Heger et al reported three cases, two of them died. Two patients who died were discussed by Sobol and Rakita,11 Waxman et al reported five patients; 4 of them were reported in detail by Marochlalski et al and Gefter et al, and one died. Fogoros et al reported six patients with amiodarone dose of 600-800 mg/d for 3-14 months; three of them died.

A—diffuse interstitial pattern; Am—amiodarone; B—intraalveolar infiltrates; C—pleural thickening; Co—corticosteroids; CXR—chest radiograph; D—pleural effusion; +—microscopic examination done; ESR—erythrocyte sedimentation rate, in one hour; Ga—Galium 67 scintigraphy; Hb—haemoglobin; LVoL—lung volumes, TLC and/or VC; n—normal; PCWP—pulmonary capillary wedge pressure; PO2—arterial oxygen pressure; PVR—pulmonary vascular resistance; TLoCO—carbon monoxide diffusing capacity; WBC—white blood cell count.

In two patients the respiratory rate decreased, a slight increase of Pao2 was noted, and the lung volume increased.

In three cases, two died. The autopsy findings in all cases showed afebrile but coarse crackles were audible at the right base. The chest radiograph showed an infiltrative pattern in the right lower lobe. Gallium 67 scintigraphy showed increased uptake in the corresponding area. Extensive investigation of possible microbiological and immunological causes yielded negative results. The erythrocyte sedimentation rate was 81 mm in one hour and the serum liver enzyme activities were increased. The arterial blood gases during the breathing of room air showed a pH of 7.39, a Paco2 of 36 mmHg (4.8 kPa), and a Pao2 of 72 mmHg (9.6 kPa). The vital capacity was slightly decreased, with a normal FEV1. The diffusing capacity was 34% of the predicted value. Amiodarone was stopped and pulmonary function tests were repeated at intervals. The lung volumes did not change appreciably and the diffusing capacity showed a slight initial increase. Treatment with prednisolone, 40 mg a day, was followed by further increase in diffusing capacity (fig 4B).
Fig 3 **Gallium 67 scintigraphy from patient 2:** (a) increased gallium 67 activity in both lungs one week after withdrawal of amiodarone; (b) normal appearances three weeks after starting treatment with prednisolone.

Fig 4 **Vital capacity (VC) and carbon monoxide transfer (TLco) after discontinuation of amiodarone (↓) before and during treatment with corticosteroid in two patients.** Values are expressed as percentages of predicted normal values.
Discussion

Within three years of the first observation,9 amiodarone pneumonitis has been reported in a total of 35 patients (including our own). It is remarkable that, despite its large scale use since the late 1960s the pulmonary side effects were not recognised earlier. In the very first published cases a possible association between amiodarone and pulmonary disease was only suggested. The data accumulated since then, however, and rechallenge testing, such as that performed in our first case,18 provide convincing evidence of drug induced pulmonary changes.

The four patients observed in our hospital were encountered in a population of more than 300 patients treated with the drug. The incidence of overt pulmonary side effects may therefore be lower than the 6% estimated by others.15,24

Of the 35 patients reported, 11 have died as a result of this complication (table 2). Detailed clinical data were available for 27 patients and histopathological confirmation for 19. Most of them (21 patients) received 600–800 mg of amiodarone daily. Marchlinski et al15 found no instances of pulmonary adverse effects in patients maintained on 400 mg or less of amiodarone a day. Another report17 described a case in which pulmonary complications developed only when the dose was increased to 800 mg, a daily dose of 200 mg having been well tolerated for the previous five years. In 11 cases (including those reported here) pulmonary adverse effects have developed in patients treated with 400 mg or less of amiodarone daily.9,11,13,19

All patients experienced some increase in exertional dyspnoea and in some patients this was severe. Non-productive cough and weight loss were the next most prominent symptoms. Transient fever was frequent, while pleuritic chest pain was seldom present.

At physical examination the auscultatory findings were variable. Decreased breath sounds and fine or coarse crackles were frequently noted at the lung bases and sometimes a pleural friction rub was found. The initial radiological changes were almost indistinguishable from those associated with pulmonary venous congestion. Later a diffuse interstitial pattern or patchy alveolar infiltrates were found, while pleural thickening or pleural effusion were less frequent. In our earlier report18 the pulmonary lesions became more extensive on continuation of amiodarone and showed peculiar migratory characteristics.

The ESR was generally raised and the leucocyte count was sometimes increased. Blood eosinophilia was encountered in a small proportion of cases. Like others,11,13,15 we did not find evidence of any immune or autoimmune process. We are aware of only one report17 describing the presence of C3 depositions in the alveolar septa of a case of amiodarone pneumonitis.

As in other cases,11,12,15,17,23 we also found disturbed blood gas tensions and a reduction of carbon monoxide diffusing capacity. The diffusing capacity appeared to be most affected during periods of active, untreated pneumonitis, as can be seen from serial estimations in patients 2 and 3 (fig 4). Lung volumes seemed to be largely unaffected in two of our patients while the third showed indications of a restrictive defect, as in other cases.9,11,13,15,20,21 Spirometry may be of limited diagnostic value as it can be affected by left sided heart failure.

Gallium 67 scintigraphy18 appeared to be a sensitive indicator of the activity of the interstitial process and was a great help in differentiating between pneumonitis and left sided heart failure. In our previous case18 and in patient 2, it showed increased uptake in the lungs before any changes could be detected on the chest radiograph. Similar observations have been made with pulmonary sarcoidosis.26

The microscopic changes seen in transbronchial lung biopsy18 and necropsy specimens in our patients were consistent with the pathological findings of others.10,12,15 These changes were non-specific and correspond well with the description given by Katzenstein and Askin27 of diffuse alveolar damage—that is, a limited reaction of the lung to injury. The high concentration of amiodarone and its metabolite desethylamiodarone found in the lung tissue, as in patient 1, may indicate a toxic origin of the pulmonary damage observed. It seems unlikely that amiodarone or its metabolite produced toxic effects in the lung, since one of us25 found high concentrations in a single postmortem examination of a patient dying without symptoms or overt pulmonary changes. There is experimental evidence,28,29,30 however, that furan containing compounds are actively metabolised in the lung to toxic intermediates. With amiodarone a similar metabolic mechanism may form the basis of the diffuse alveolar damage.

Most of the patients reported had been given doses of amiodarone of over 600 mg a day and the pulmonary effects appeared after a variable interval. Difference in susceptibility may result from variation in the daily dose or the cumulated dose of amiodarone and it could be influenced by variation in the ability of individuals to metabolise the drug to reactive intermediates.

The beneficial effects of corticosteroid treatment, as seen in patient 2 and patient 3, are obvious but
Amiodarone pneumonitis: three further cases with a review of published reports

difficult to explain. Treatment may diminish the inflammatory processes that are secondary to toxic alveolar damage. It has been suggested that low dose corticosteroid treatment should be used as prophylaxis against amiodarone pneumonitis. We believe, however, that some caution is called for, especially since the exact nature of the pulmonary changes is as yet unknown. Moreover, Dake and Golden reported a case in which pulmonary toxicity occurred during amiodarone treatment despite the fact that the patient had been receiving corticosteroid treatment for four years. The pulmonary adverse effects of amiodarone are serious complications with a high mortality rate and, especially in the presence of overt left sided heart failure, the differential diagnosis can be extremely difficult. The attending physician should therefore keep the possibility of amiodarone pneumonitis in mind whenever the drug is being given and, where doubt exists, further diagnostic investigations should be performed, including pulmonary function testing and where possible gallium 67 scintigraphy.

We would like to thank Drs MCP Braat and H Barrowclough for their help and Mrs S Teengs for the drawings, and also Mr CM van Hunnik for the photographic reproductions.

References

Amiodarone pneumonitis: three further cases with a review of published reports.
J I Darmanata, N van Zandwijk, D R Düren, E A van Royen, W J Mooi, T A Plomp, H M Jansen and D Durrer

Thorax 1984 39: 57-64
doi: 10.1136/thx.39.1.57

Updated information and services can be found at:
http://thorax.bmj.com/content/39/1/57

Email alerting service
These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/