57Co-bleomycin and 67Ga-citrate in detecting and staging lung cancer

OE NIEWEG, H BEEKHUIS, DA PIERS, HJ SLUITER, AM VAN DER WAL, MG WOLDRING

From the Institute of Nuclear Medicine and Pulmonary Division, Department of Medicine, University of Groningen, The Netherlands

ABSTRACT

In the investigation of suspected lung cancer bleomycin labelled with cobalt-57 and gallium-67 labelled with citrate are currently used to detect the primary tumour and to establish the presence of metastases in the lung hilum and mediastinum. A comparative study of these radio-pharmaceuticals was performed in 63 patients with proved lung cancer. 57Co-bleomycin showed the primary tumour in 58 patients (92%) and 67Ga-citrate in 34 (54%) (p < 0.01). The average tumour-to-lung ratio was 3.4 with 57Co-bleomycin and 1.5 with 67Ga-citrate. Proved metastases in the hilum or the mediastinum were visualised with 57Co-bleomycin scintigraphy in 16 out of 18 patients (89%) and with 67Ga-citrate scintigraphy in only eight (45%) (p < 0.01). These results indicate that 57Co-bleomycin scintigraphy is more suitable for detecting and staging lung cancer than is 67Ga-citrate. 57Co-bleomycin is valuable in the detection of peripheral lesions, in which a pathological diagnosis is difficult to achieve, since a positive scintigram indicates malignancy. When 57Co-bleomycin scintigraphy suggests hilar or mediastinal metastases mediastinoscopy should be carried out; but when no metastases are apparent it is reasonable to proceed directly to thoracotomy without mediastinoscopy.

In patients with a peripheral lesion on the chest radiograph a diagnosis is often difficult to establish. Cytological examination of the sputum is not always conclusive. Furthermore, it is frequently not possible to obtain a biopsy specimen to provide a histological diagnosis. When the diagnosis of bronchial carcinoma is established, staging is of the utmost importance. Patients with cancers other than small-cell are traditionally considered suitable for surgical removal of the affected lobe or lung only in the absence of hilar and mediastinal metastases, although lately a more aggressive approach has sometimes been advocated. The mediastinum can be evaluated by mediastinoscopy; but because of the morbidity it causes this is not considered a minor surgical procedure, and only part of the mediastinum can be explored this way. A non-invasive method that reduces the need for mediastinoscopy would be highly desirable. Scintigraphy using gallium-67-citrate and bleomycin labelled with cobalt-57 has been reported to be useful in establishing the malignant nature of a lesion seen on the chest radiograph. Furthermore, both radio-pharmaceuticals are in use for the detection of lymph-node metastases in the hilum and mediastinum.

It has been suggested that 57Co-bleomycin is more suitable than 67Ga-citrate for the detection of primary lung cancer, but no comparative study of the detection of metastases in the hilum or mediastinum has been published to our knowledge. In this paper we present evidence that 57Co-bleomycin is superior to 67Ga-citrate for both purposes.

Methods

The criteria for selection of patients included (a) the need to investigate a peripheral lesion of unknown origin seen on the chest radiograph and (b) the need to detect possible metastases in the hilum and mediastinum. Most patients were referred because of a small symptomless lesion on a chest radiograph from a mass screening programme.

Scintigraphy was performed in 93 patients. Informed consent was obtained. Of these patients, 23 were excluded because of lack of histological confirmation. Of the remaining 70 patients, 63 were
Co-bleomycin and 67Ga-citrate in detecting and staging lung cancer

Table 1 Detection of primary tumours in 63 patients with proved lung cancer

<table>
<thead>
<tr>
<th>Scintigraphy result</th>
<th>57Co-bleomycin</th>
<th>67Ga-citrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>58</td>
<td>34</td>
</tr>
<tr>
<td>Equivocal</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Negative</td>
<td>4</td>
<td>20</td>
</tr>
</tbody>
</table>

rectangular region of interest in the corresponding area of the opposite lung.

Results

PRIMARY TUMOUR
57Co-bleomycin was clearly superior in detecting primary tumours (table 1). There was a sensitivity of 92% with 57Co-bleomycin scintigraphy and of 54% with 67Ga-citrate scintigraphy (equivocal scintigrams are considered negative). This difference is significant (sign test, p < 0.01). In 55 patients tumour-to-lung ratios were calculated. The tumour-to-lung ratio with 57Co-bleomycin scintigraphy was 3.4 ± 1.7 (mean ± SD) and with 67Ga-citrate scintigraphy 1.5 ± 0.9. The mean difference between these ratios in individual patients is significant (Student’s t test, p < 0.01).

The size of the lesions, measurable on the chest radiographs in 57 patients, influenced the scintigraphy results. The mean diameter of the lesions measured was 3.7 cm (range 1.0–8.3 cm). The diameters of the tumours in the patients with false negative 57Co-bleomycin scintigrams were 3.7, 1.7,
Tumours smaller than 3 cm were seldom visualised with 67Ga-citrate. An example of a small tumour seen on a chest radiograph and on the 57Co-bleomycin but not the 67Ga-citrate scintigram is illustrated in figs 2 and 3.

The pathological diagnoses of the tumours in the four patients with false-negative 57Co-bleomycin scans were carcinoid tumour, squamous-cell carcinoma, adenocarcinoma, and large-cell anaplastic carcinoma. No relation between the histological type of the tumour and the scintigraphy results was noted for either radiopharmaceutical.

HILUM AND MEDIASTINUM

Eighteen patients proved to have metastases in hilum or mediastinum. The results of scintigraphy in this group and in the 45 patients without metastases are presented in table 2. In the detection of these metastases the sensitivity of the 57Co-bleomycin scintigraphy was 89% and of the 67Ga-citrate scintigraphy 44%, a significant difference (sign test, $p < 0.01$). The specificity of the 57Co-bleomycin scintigraphy was 98% and of 67Ga-citrate scintigraphy 91% (equivocal scintigrams are considered false positive). This difference is not significant (sign test).

BENIGN LESIONS

Eight patients proved to have a benign lesion. The nature of their lesions and the scintigraphy results are presented in table 3. Three had false-positive results from 57Co-bleomycin scintigraphy but none from 67Ga-citrate scintigraphy.
Table 2 Detection of metastases in hilum and mediastinum with \(^{57}\)Co-bleomycin and \(^{67}\)Ga-citrate scintigraphy

<table>
<thead>
<tr>
<th>Group</th>
<th>No of patients</th>
<th>(^{57})Co-bleomycin scintigraphy</th>
<th>(^{67})Ga-citrate scintigraphy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Positive</td>
<td>Equivocal</td>
</tr>
<tr>
<td>With hilar tumour</td>
<td>18</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Without hilar tumour</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Diagnoses and scintigraphy results* of eight patients with benign lesions

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Diagnosis</th>
<th>(^{57})Co-bleomycin</th>
<th>(^{67})Ga-citrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active tuberculosis</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>2</td>
<td>Pneumonia</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>3</td>
<td>Lung infarction</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>4†</td>
<td>Chondroma</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>5</td>
<td>Scar tissue</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>6</td>
<td>Metaplasia</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>7</td>
<td>Pneumonia</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>8‡</td>
<td>Bronchopatia osteoplastica</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

* + indicates positive scintigram and − negative scintigram.
† This patient had two different benign lesions.
‡ This patient also had squamous-cell carcinoma.

Discussion

Clinical staging of lung cancer is important for several reasons: firstly, to aid the selection of the most effective treatment; secondly, to assist in determining prognosis; and, thirdly, to allow comparison of end-results reported from different sources.

\(^{67}\)Ga-citrate is widely used for this purpose; \(^{57}\)Co-bleomycin is used on a smaller scale. After the first paper on the use of \(^{67}\)Ga-citrate as a tumour-seeking agent, initially encouraging results in detecting lung cancer were reported. In 1217 patients, collected from different publications, a sensitivity of 91% was found. Later it became evident that a negative scan could not be relied on in the case of lesions less than 3 cm in diameter. The detection of mediastinal metastases proved disappointing, possibly because of the high uptake normally seen in this region. Recently it was stated that the detection of hilar and mediastinal tumour extension with \(^{67}\)Ga-citrate is still highly controversal. A considerable number of false-positive and false-negative scintigrams has been reported. Possibly a higher dose, up to 10 mCi (370 MBq), more refined equipment such as a tomographic system, injection of iron, or injection of desferoxamine mesylate after \(^{67}\)Ga-citrate injection, would improve the sensitivity. Another disadvantage of \(^{67}\)Ga-citrate is its rather poor specificity—it is concentrated in benign lesions such as inflammation and sarcoidosis lesions. \(^{57}\)Co-bleomycin has proved to be useful in the detection of lung cancer. A sensitivity of 98% was found in one series and in another 96%. In 112 patients with mediastinal tumour invasion no false negatives were encountered. The specificity of \(^{57}\)Co-bleomycin has not been investigated thoroughly. The long half life of \(^{57}\)Co (270 days) has restricted its use largely to those patients suspected of having a neoplasm. It is known, however, that in inflammatory conditions, especially active tuberculosis, positive scintigrams are sometimes seen. Now that \(^{57}\)Co, a positron-emitting radioisotope with a half life of 18 hours, is available as a label for bleomycin, a prospective study in non-neoplastic diseases should be carried out to determine the specificity of Co-bleomycin.

The results of the present study lead to the conclusion that \(^{57}\)Co-bleomycin is superior to \(^{67}\)Ga-citrate in the detection and staging of lung cancer. More primary tumours were visualised and the sensitivity was 92%, compared with 54% for \(^{67}\)Ga-citrate. In comparative studies Grove et al and Poulose et al found a sensitivity of 91% with \(^{57}\)Co-bleomycin and 76% with \(^{67}\)Ga-citrate in patients with lung cancer. The latter figure is better than our results. In the present study tumour-to-lung ratios for \(^{57}\)Co-bleomycin were clearly better: 3:4 compared with 1:5 for \(^{67}\)Ga-citrate. Bertrand et al compared tumour-to-lung ratios in 21 patients with lung cancer and found a ratio of 5:2 for \(^{57}\)Co-bleomycin and of 2:1 for \(^{67}\)Ga-citrate. Detection of hilar and mediastinal metastases proved more reliable with \(^{57}\)Co-bleomycin in our study. In one of the few comparative studies that we know of were the hilum and mediastinum evaluated, yet these areas are of great clinical importance.

The size of the lesion plays an important part in its detection with radiopharmaceuticals. Patients with a large primary tumour, in whom a diagnosis could easily be established by other means, were excluded from this study. Patients with obvious clinical or radiological signs of hilar or mediastinal metastases were also excluded. They were subjected to mediastinoscopy without prior scintigraphy. In most of our patients the lesion was discovered on mass screening radiographs, when symptoms had not yet developed. As a result most of the patients studied had a small tumour. This may explain our unfavourable results with \(^{67}\)Ga-scintigraphy. The
importance of the tumour size for the scintigraphy results is shown in fig 1.

The major drawback of 57Co, its long half life, poses no threat to the patient since 57Co-bleomycin is quickly excreted by the kidneys; but the urine should be collected for at least 24 hours and stored to prevent environmental contamination. Using 54Co as label for bleomycin solves this problem. Our first results with 55Co-bleomycin in the detection of lung cancer, with a positron camera, are promising. 29

We do not advocate that 57Co-bleomycin should replace biopsy and histological diagnosis of the primary tumour; but in peripheral lesions, in which a pathological diagnosis is difficult to obtain, a positive scintigram is an indication of a malignancy. When hilar or mediastinal metastases are suggested by scintigraphy, mediastinoscopy is carried out. If mediastinoscopy provides histological evidence of metastases thoracotomy is not indicated. When no hilar or mediastinal metastases are shown on the scintigram (and in the absence of distant metastases) we consider that mediastinoscopy is not needed. We then proceed directly to thoracotomy.

This study was supported by a grant from the Dutch Cancer Foundation, Koningin Wilhelmina Fonds. The secretarial assistance of Miss E Sijtsema is gratefully acknowledged.

References

57Co-bleomycin and 67Ga-citrate in detecting and staging lung cancer

57Co-bleomycin and 67Ga-citrate in detecting and staging lung cancer.
O E Nieweg, H Beekhuis, D A Piers, H J Sluiter, A M van der Wal and M G Woldring

Thorax 1983 38: 16-21
doi: 10.1136/thx.38.1.16

Updated information and services can be found at:
http://thorax.bmj.com/content/38/1/16

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/