Serum beta-2-microglobulin and angiotensin-converting enzyme activity in sarcoidosis

RW PARRISH, JD WILLIAMS, BH DAVIES

From Llandough Hospital, Penarth, South Glamorgan

ABSTRACT Angiotensin-converting enzyme activity in sarcoidosis is regarded both as a diagnostic feature and as an index of disease activity. Increased activity of this enzyme is thought to parallel macrophage and epithelioid cell activity. Beta-2-microglobulin, a low-molecular-weight protein associated with the histocompatibility antigens, is thought to reflect activation of immunocompetent cells, particularly lymphocytes. In 132 patients with known sarcoidosis no close association was found to exist between the results of the two assays (r = 0.53). Angiotensin-converting enzyme activity was raised in 33% and beta-2-microglobulin concentrations in 63% of patients with sarcoidosis. When analysed prospectively, the results of the two assays showed no correlation in 29 patients over periods of up to 19 months. Stage, duration of disease, and corticosteroid treatment showed no significant effect on levels of either angiotensin-converting enzyme or beta-2-microglobulin. The disparity between indices of macrophage and lymphocyte activation requires further study in sarcoidosis.

Detection of activity in sarcoidosis by conventional criteria such as those based on chest radiography or physiological studies is difficult. Cytological analysis of bronchoalveolar lavage fluid may be more informative, but is impractical for repetitive studies. There is a need for a simple test which would reflect the activity of immunocompetent cells concerned in the pulmonary immune effector response.

In 1974 Lieberman reported increased activity of serum angiotensin-converting enzyme in 13 patients with sarcoidosis who were not receiving corticosteroids. He noted that raised levels fell towards normal with corticosteroid treatment, and confirmed these findings in a larger study. Beta-2-microglobulin is a low-molecular-weight protein which seems to be associated with several membrane proteins. It is present in very low concentrations normally, in a wide variety of body fluids. Mornex reported increased concentrations in sarcoidosis—in all patients with the acute disease or in relapse and also in most patients with quiescent disease. In two of his patients raised concentrations of beta-2-microglobulin fell towards normal with increased corticosteroid dose.

The purpose of the present study was to study serum levels of angiotensin-converting enzyme and beta-2-microglobulin in patients with sarcoidosis and to correlate any relationship between the results of the two assays.

Methods

We studied 132 patients with sarcoidosis; 100 patients had angiotensin-converting enzyme assays performed, and all had beta-2-microglobulin assays. The age range was 20–73 years (mean 40.7). There were 23 controls for the angiotensin-converting enzyme and 76 for beta-2-microglobulin, their ages ranging from 20 to 78 years (mean 49). All patients and all controls had normal renal function and none was diabetic. Patients were divided into acute and chronic disease groups, chronic disease being defined as evidence of clinical, radiographic, or physiological sarcoidosis for more than one year. Radiographic staging of pulmonary disease activity was performed according to international criteria. Cases of sarcoidosis with a normal chest radiograph are defined as stage 0. Stage 1 comprises patients with bilateral hilar lymphadenopathy with otherwise normal lung fields. Stage 2 patients have pulmonary infiltration in addition to bilateral hilar lymphadenopathy and stage 3 is the late stage of pulmonary infiltration without lymphadenopathy.

Serum angiotensin-converting enzyme activity was assayed with hippuryl-L-histidyl-L-leucine as a
Serum beta-2-microglobulin and angiotensin-converting enzyme activity in sarcoidosis

substrate and orthophthalaldehyde for fluorometric analysis, the results being expressed in nmol/min/ml. Beta-2-microglobulin was assayed with a standard commercial solid-phase radioimmunoassay (Pharmacia Ltd) and the results are expressed in mg/litre.

Results were analysed using the Student t test.

Results

The serum levels of angiotensin-converting enzyme in controls and patients with sarcoidosis, acute and chronic, with and without corticosteroid treatment, are shown in figure 1. There are significant differences between the population means for controls and those with acute sarcoidosis (p < 0.001) and between controls and those with chronic sarcoidosis (p < 0.01). We found no significant difference in angiotensin-converting enzyme activity between the acute and chronic sarcoidosis groups. Angiotensin-converting enzyme activity in patients treated with corticosteroids and in those not so treated did not differ significantly. Classification of patients by radiographic stage did not show significant differences in angiotensin-converting enzyme activity (fig 2).

Mean serum concentrations of beta-2-microglobulin for both acute and chronic sarcoidosis differ significantly from the control mean (p < 0.001) (fig 3). As with angiotensin-converting enzyme levels, no significant differences emerged between acute and chronic groups or between those treated and those not treated with corticosteroids. We found a small difference, however, between beta-2-microglobulin levels in nine stage 0 patients and 42 stage 1 patients (p < 0.05). In 84 patients with all stages of sarcoidosis, who had blood taken on the same day for both angiotensin-converting enzyme and beta-2-microglobulin assays, there was no significant correlation between the results of the two assays, either for the group as a whole (fig 4: r = 0.53) or for patients classified according to stage of disease.

In sequential studies in 29 patients, using within-patient multiple-regression techniques, we found no significant association between levels of angiotensin-converting enzyme and beta-2-microglobulin in individual patients over periods of up to 19 months after the onset of the disease.

Discussion

Our data on serum angiotensin-converting enzyme activity confirm the previous findings that levels are increased in a proportion of patients with sarcoidosis. Our mean levels (± SE) for acute (51.2 ± 3.0) and chronic (47.5 ± 2.6) disease significantly exceed the control mean (37.5 ± 1.7). We have not confirmed previous reports of significant differences between acute and chronic sarcoidosis, but have confirmed the lack of association with radiographic stage. The mean serum angiotensin-converting enzyme activity

Fig 1 Serum angiotensin-converting enzyme activity in controls and in patients with acute and chronic sarcoidosis receiving and not receiving corticosteroid treatment. The bars indicate means and the shaded area the control mean ± 2 SD.
Serum angiotensin-converting enzyme (IU)

Fig 2 Serum angiotensin-converting enzyme activity in controls and in patients with sarcoidosis classified by stage of disease. The bars indicate means.

Serum β₂-microglobulin (mg/l)

Fig 3 Serum β₂-microglobulin concentrations in controls and in patients with acute and chronic sarcoidosis receiving and not receiving corticosteroid treatment. The bars indicate means.
Serum beta-2-microglobulin and angiotensin-converting enzyme activity in sarcoidosis

in patients receiving corticosteroids did not differ significantly from that in non-treated patients. This is not what might have been anticipated in view of extensive evidence that corticosteroids depress raised levels of angiotensin-converting enzyme in sarcoidosis.

Our data for beta-2-microglobulin show that in both acute (2.7 ± 0.2) and chronic (3.05 ± 0.12) disease the population means significantly exceed the control population mean (1.75 ± 0.11). This elevation may be a marker of the known pulmonary lymphocyte activation in sarcoidosis. As with angiotensin-converting enzyme, serum beta-2-microglobulin concentrations did not vary significantly with duration of disease or with corticosteroid treatment. In view of macrophage and lymphocyte activation in sarcoidosis we expected that there would be a correlation between indices of activation of these two types of immunological effector cells.

It is currently accepted that estimation of serum angiotensin-converting enzyme in sarcoidosis has an important supportive role in the diagnosis and assessment of the disease. It has been shown to be increased in some patients with sarcoidosis. Levels tend to be higher in acute, disseminated disease, especially when corticosteroid treatment has not been given—as many as 70% of these patients having raised levels. Nearly all reports suggest that high levels of angiotensin-converting enzyme fall towards normal with corticosteroid treatment. Lieberman suggested that a fall in angiotensin-converting enzyme activity in response to corticosteroid treat-

ment was a good prognostic sign, and that serial estimations could be of value in titrating an appropriate maintenance dose.3

Silverstein pointed out that angiotensin-converting enzyme activity in the lymph nodes of patients with sarcoidosis was almost always increased and was diagnostically significant.10 Immunofluorescence techniques have shown that the enzyme is present in most epithelioid and giant cells of sarcoid granulomas and it has been suggested that this is the site of synthesis.10

In 1968 Berggård and Bearn isolated beta-2-microglobulin from the urine of patients with renal tubular disorders.11 In view of its low molecular weight (11 800) unbound beta-2-microglobulin passes freely into the glomerular filtrate. Normally reabsorption by the proximal convoluted tubule is almost complete, and the globulin is catabolised within renal tissue.

Cunningham et al determined the entire amino-acid sequence of beta-2-microglobulin and noted similarities with the CH3 region of the IgG molecule.12 Beta-2-microglobulin, however, does not cross-react with the immunoglobulins or their subunits.

In man beta-2-microglobulin seems to be produced by all cells except mature erythrocytes and the trophoblastic layer of the placenta.13 It is suggested that HLA antigens are composed of two distinct polypeptide chains—a heavy chain, MW 44 000, which carries the alloantigenic determinants, and a light chain, beta-2-microglobulin, in non-covalent association. This seems to be shed from cells at a constant rate in health. Nilsson14 showed that human lymphocytes possess on their surface 3–5 x 10^5 molecules of beta-2-microglobulin, but less than 10^5 molecules of HLA antigen. The amount of transplantation antigens varies with cell type, but cells of the immune system are particularly rich in these antigens. Synthesis of beta-2-microglobulin by PHA stimulated and normal lymphocytes was demonstrated by Bernier and Fanger15 and several workers have described increased concentrations of beta-2-microglobulin in patients with various lymphoproliferative disorders. High concentrations in the presence of normal renal function are thought to indicate lymphocyte activation. In view of its widespread distribution, serum levels of beta-2-microglobulin are raised in states associated with high cell turnover, as in the fetus;16 in pregnancy;17 and in a wide variety of neoplastic,18,19 inflammatory, and immunological diseases.20 Because of the many possible causes of a raised concentration of beta-2-microglobulin, it cannot be expected to have discriminating diagnostic value. It is as a marker of lymphocyte activation that levels may parallel the intense lymphocytic infiltrate known to occur in pulmonary sarcoidosis. Beta-2-microglobulin levels in normal individuals are known.
to rise with age, but the effect of age on angiotensin-converting enzyme activity is not clear.

Our findings suggest that \(\beta_2 \)-microglobulin concentrations do not adequately reflect the activity of sarcoidosis and a more sensitive marker in the systemic circulation is required for appropriate study of this disease.

We are grateful to Drs B Spragg and R Fifield for their co-operation and to Mrs J Holmes for typing the manuscript.

References

20. Talal N, Grey HM, Zvaifler N, Michaelis J, Daniels T. Elevated salivary and synovial fluid \(\beta_2 \)-microglobulin in Sjögren’s syndrome and rheumatoid arthritis. *Science*
Serum beta-2-microglobulin and angiotensin-converting enzyme activity in sarcoidosis.

R W Parrish, J D Williams and B H Davies

Thorax 1982 37: 936-940
doi: 10.1136/thx.37.12.936

Updated information and services can be found at:
http://thorax.bmj.com/content/37/12/936

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/