Hemidiaphragmatic paresis after cervical herpes zoster

L DERVEAUX, LM LACQUET

From the Department of Pathophysiology, Academisch Ziekenhuis, Pellenberg, Belgium

Herpes zoster generally affects sensory nerves, but occasionally motor nerves also are affected, so that flaccid muscle paresis develops in the segments corresponding to the dermatomes in which cutaneous lesions appear. The site of the lesion in the motor neurone is not clear, but the absence of electromyographic fasciculations and slow motor conduction velocity point to motor axon damage. Post-herpetic paresis of the diaphragm has been reported in rare instances. In the present case it developed on the left side after ipsilateral cervical herpes zoster, with the electromyographic signs of neurogenic paresis of other muscles in the same segments.

Case report

A 74-year-old man had attended our outpatient clinic since 1977 at six-month intervals for chronic bronchitis and emphysema. In March 1980 pulmonary function was clearly diminished (table), and the chest radiograph showed hyperinflation and creased peripheral vascular markings (fig. a).

In July 1980 he experienced severe pain followed by an extensive vesicular skin eruption in the left cervical region, which the family doctor diagnosed as herpes zoster. In Sep-

Hemidiaphragmatic paresis after cervical herpes zoster in a man with chronic bronchitis and emphysema: (a) first low position of the diaphragm due to emphysema, followed by (b) left-sided paresis (September 1980). Two straight lines, tangential to the highest point of either dome and perpendicular to the axis of the spine, determine the difference in level.
Hemidiaphragmatic paresis after cervical herpes zoster

Sequential measurements of pulmonary function (percentage of predicted value in parentheses)

<table>
<thead>
<tr>
<th>Date</th>
<th>VC (l)</th>
<th>FEV₁ (l)</th>
<th>FEV₁/VC</th>
<th>TLCO (ml min⁻¹ mm Hg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 1980</td>
<td>3·03 (70)</td>
<td>1·02 (37)</td>
<td>0·34</td>
<td>14·8 (60)</td>
</tr>
<tr>
<td>July 1980</td>
<td>3·13 (73)</td>
<td>1·12 (41)</td>
<td>0·36</td>
<td>—</td>
</tr>
<tr>
<td>Sept 1980</td>
<td>3·20 (75)</td>
<td>0·80 (29)</td>
<td>0·25</td>
<td>14·6 (58)</td>
</tr>
<tr>
<td>Nov 1980</td>
<td>3·25 (77)</td>
<td>1·20 (44)</td>
<td>0·37</td>
<td>—</td>
</tr>
</tbody>
</table>

VC = vital capacity; TLCO = transfer factor.

deltoid and rhomboid muscles showed denervation fibrillations and positive sharp waves in salvo; on contraction the tracing derived from the sternocleidomastoid was slightly impoverished and accelerated. The diaphragmatic response to stimulation of the phrenic nerve at Erb’s point, recorded through an oesophageal electrode, showed a normal latency time of 9 ms on the right and no muscle action potentials on the left side.

In November 1980 and February 1981 the difference between left and right diaphragmatic domes at full inspiration had decreased to 5 and 3·3 cm respectively. The paradoxical movement of the left hemidiaphragm on deep inspiration and sniffing had disappeared. The electromyogram of the left-sided cervical muscle groups had returned to normal patterns; a control electromyogram of the diaphragm was refused.

Discussion

The phrenic nerve originates mainly in C4 and partly in C3 and C5, segments that also supply the affected shoulder muscles; the sternocleidomastoid and trapezius are innervated by the accessory nerve, which has a cranial as well as a cervical spinal root and also receives branches from the cervical plexus. We postulate a causal relation between the observed phrenic paresis and the herpes zoster affection for the following reasons: firstly, the phrenic motor nerve block coincided with electromyographic features typical of neurogenic paresis in ipsilateral neck and shoulder muscles; secondly, the phrenic paresis came to our attention only two months after the herpetic eruption and did not exist four months before it, and it subsequently regressed when the neck paresthesiae improved and the electromyogram of neck and shoulder returned to normal; and, thirdly we ruled out other known causes of phrenic lesions — for example, mediastinal inflammatory and neoplastic disease, pneumonia, pleural effusion, trauma, subphrenic abscess and other abdominal infections.

As usually happens in the unilateral condition,7 our patient tolerated the diaphragmatic paralysis remarkably well despite his severe chronic obstructive lung disease. The transdiaphragmatic pressure at maximum inspiration, another valuable index of phrenic function,4 was 21 cm H₂O in November 1980 and 17 cm H₂O in February 1981 (normal value > 25 cm H₂O). These low pressures should not, however, be taken as evidence of diaphragmatic paresis since the emphysema of our patient could have produced the same defect.9

The case suggests that in some instances so-called idiopathic paralysis of the diaphragm could be related to herpes zoster. It must still be differentiated from malignant invasion of the mediastinum; this problem is compounded by the fact that malignant disease itself can predispose to herpes zoster.

We acknowledge the help of Dr J De Meirson with the electromyography.

References

Hemidiaphragmatic paresis after cervical herpes zoster.

L Derveaux and L M Lacquet

Thorax 1982 37: 870-871
doi: 10.1136/thx.37.11.870

Updated information and services can be found at:
http://thorax.bmj.com/content/37/11/870.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/