Lung inflammation in sarcoidosis: comparison of serum angiotensin-converting enzyme levels with bronchoalveolar lavage and gallium-67 scanning assessment of the T lymphocyte alveolitis

CI SCHOENBERGER, BR LINE, BA KEOGH, GW HUNNINGHAKE, RG CRYSTAL

From the Pulmonary Branch, National Heart, Lung, and Blood Institute, and Nuclear Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA

ABSTRACT Serum angiotensin-converting enzyme (ACE) is elevated in many patients with pulmonary sarcoidosis and has been proposed as a measure of disease activity. The present study was designed to evaluate the possible relationship between serum ACE and direct measures of the intensity of the alveolitis of pulmonary sarcoidosis as measured by bronchoalveolar lavage and gallium-67 (67Ga) scans. To accomplish this, 64 measurements of serum ACE, lavage T lymphocytes, and lung uptake of 67Ga were performed in 41 patients with biopsy-proven sarcoidosis. Elevations of serum ACE were found on at least one occasion in 17 patients (41%). However, serum ACE was found to be a poor predictor of the intensity of alveolitis in sarcoidosis as assessed by the quantitation of bronchoalveolar lavage cells that were T lymphocytes and by 67Ga scanning. Elevated serum ACE did not predict which patients would have elevated proportions of lavage T lymphocytes, which patients would demonstrate increased pulmonary uptake of 67Ga, or which patients would have high-intensity alveolitis as defined by a combination of these criteria. These observations suggest that while serum ACE may be useful in diagnosing sarcoidosis, it does not reflect accurately the intensity of the alveolitis of the pulmonary component of this disease.

Sarcoidosis is a chronic granulomatous disease of unknown aetiology that can affect nearly every organ in the body. Pulmonary involvement occurs in more than 90% of patients; of this group, 20-25% suffer permanent loss of lung function and 5-10% die as a result.1-4

The earliest stage of pulmonary sarcoidosis is an alveolitis characterised by a diffuse infiltration of the lung by large numbers of monocytes/macrophages and activated T lymphocytes.4-12 Current concepts of the pathogenesis of pulmonary sarcoidosis suggest that it is the activated T lymphocytes that attract monocytes to the lung to form building blocks for granuloma.13 In addition, the activated lung T lymphocytes also stimulate lung B lymphocytes in a nonspecific, polyclonal fashion, thus causing the hyperglobulinemia that is characteristic of the disease.14

Several studies have shown that two methods, quantitation of lung T lymphocytes by bronchoalveolar lavage and 67Ga scanning, can be closely correlated with the alveolitis of pulmonary sarcoidosis.6-10 15 The proportion of T lymphocytes found in bronchoalveolar lavage fluid correlates with the intensity of the mononuclear cell alveolitis observed morphologically and with the proportion of T lymphocytes that can be recovered directly from lung biopsies. In addition, the intensity of uptake of 67Ga in the lung correlates with the proportion of T lymphocytes recovered by bronchoalveolar lavage.

Using these methods, patients with pulmonary sarcoidosis can be grouped into two categories.4 16 Those with “high intensity alveolitis” are defined as those with lavage T lymphocytes of >28% together with a positive 67Ga scan of the lung, and those with “low intensity alveolitis” are defined as those with
lavage T lymphocytes of ≤28% or a negative 67Ga scan or both. The utility of this classification is illustrated by the prospective evaluation of untreated patients with pulmonary sarcoidosis: of those with high intensity alveolitis, approximately 62% will deteriorate in one or more lung function parameters over the subsequent six months. In contrast, fewer than 8% of individuals with low intensity alveolitis will deteriorate over the same time period.16

In this context, the present study was designed to compare the intensity of the alveolitis of sarcoidosis with measurements of serum ACE activity, a test that is used in the diagnosis of sarcoidosis and has been suggested as a useful measure of the activity of disease in these patients. To accomplish this, serum ACE was measured in 41 patients with biopsy-proven pulmonary sarcoidosis and compared with lavage and 67Ga estimates of the alveolitis made at the same time.

Methods

The study population consisted of 41 individuals with biopsy-proven pulmonary sarcoidosis, with a mean age of 37-7 ± 1-8 years (all data presented as mean ± standard error of the mean). There were 16 men and 25 women; 19 were caucasian and 22 were black. Thirty-one (76%) were untreated at the time of entry into the study; the remainder were taking prednisone (mean dose 31-3 ± 2-8 mg per day). For the entire group, the mean duration of symptoms was 37-0 ± 5-9 months. Five patients were in radiographic stage 0 (normal chest film); nine were in radiographic stage I (hilar adenopathy only); 11 were in stage II (hilar adenopathy plus pulmonary infiltrate), and 16 were in stage III (infiltrate only). Pulmonary function testing demonstrated mean values as follows: vital capacity 76-9 ± 2-7% of predicted; total lung capacity 75-7 ± 2-7% of predicted; forced expiratory volume in one second 81-9 ± 3-3% of predicted; single breath diffusing capacity 86-2 ± 2-8% of predicted (based on alveolar volume and haemoglobin); and forced expiratory volume in one second/forced vital capacity of 104 ± 3-4% of predicted.17

Angiotensin-Converting Enzyme

Serum angiotensin-converting enzyme was determined using the radiochemical assay developed by Ryan and co-workers18 and marketed by Ventrex Laboratories, Portland, Me. The substrate used was (3H)-hippuryl-glycyl-glycine, and enzyme activity was measured as a function of the amount of (3H)hippuric acid hydrolysed during a one hour incubation. Enzyme activity was expressed in arbitrary units (units = nanomoles hippuric acid generated/
64 measurements of all three tests in 41 patients). Data on the total number of T lymphocytes recovered via bronchoalveolar lavage and the number of T lymphocytes/ml of lavage fluid were available in 24 patients, of whom 16 had single and eight had multiple (range 2-4) determinations of lavage T lymphocytes in conjunction with simultaneous serum ACE and 67Ga scans (total 39 measurements in 24 patients). In those instances where more than one measurement of each test was made, each was separated by three to 12 months. Several approaches were used for data analysis.

1 Serum ACE and lavage % T lymphocytes were compared using the Pearson correlation. This was done using each patient only once (n = 41) and using all data from all patients (n = 64).

2 Serum ACE levels were compared to lavage % T lymphocytes using the Chi-square test. To do this, serum ACE levels were grouped as normal or elevated and the lavage % T lymphocyte data were grouped as ≤28% or >28%. This was done using each patient once (n = 41) and using all data from all patients (n = 64).

3 Serum ACE was compared with total lavage T lymphocytes recovered and T lymphocytes/ml of lavage fluid using the Pearson correlation. In addition, these parameters were also compared by separating the patients into two groups: those with normal (<125 units) serum ACE, and those with elevated (>125 units) serum ACE. For each group, the mean and standard error of total T lymphocytes recovered and T lymphocytes/ml of lavage fluid were calculated. The respective means for the two serum ACE groups were then compared using the two-tailed Student's t test (that is, mean total T lymphocytes recovered in the normal serum ACE group versus mean total T lymphocytes recovered in the elevated serum ACE group; and mean T lymphocytes/ml of lavage fluid in the normal serum ACE group versus mean T lymphocytes/ml of lavage fluid in the elevated serum ACE group). In each instance, these comparisons were done using each patient only once (n = 24) and using all data from all patients (n = 39).

4 Serum ACE and 67Ga index values were compared using the Pearson correlation with each patient used once (n = 41) and using all data from all patients (n = 64).

5 Serum ACE levels were compared to the 67Ga indices using the Chi-square test. To do this, serum ACE levels were grouped as normal or elevated and the 67Ga indices were grouped as ≤50 index units or >50 index units. This was done using each patient once (n = 41) and using all data from all patients (n = 64).

6 Serum ACE was compared to the intensity of the alveolitis by grouping the patients as having high intensity alveolitis or low intensity alveolitis and comparing the mean serum ACE levels of the two groups using the two-tailed Student's t test. This was done using each patient once (n = 41) and using all data from all patients (n = 64).

7 Serum ACE levels were compared to the intensity of alveolitis using the Chi-square test. To do this, serum ACE levels were grouped as normal or elevated and the patients were grouped as having high intensity alveolitis or low intensity alveolitis. This was done using each patient once (n = 41) and using all data from all patients (n = 64).

Results

Comparison of serum ACE levels with bronchoalveolar lavage demonstrated that serum ACE was not able to predict the proportion of lung inflammatory and immune effector cells that were T lymphocytes (r = 0.2, p = 0.22, fig 1). This was true when each patient was analysed once only (fig 1) and when all data from the 41 patients were considered (r = 0.17, data not shown). In addition, when patients were grouped as having ≤28% or >28% T lymphocytes in lavage (that level used to define high and low intensity alveolitis, respectively) serum ACE was unable to distinguish between the groups (p > 0.6 with each patient evaluated once; p > 0.12 with all data from all patients) (table 1). Furthermore, no conventional clinical or physiological parameter predicted which patients would have % T lymphocytes of ≤28% or >28% (p > 0.1, all comparisons) (table 2).

No significant correlations were found between serum ACE and total T lymphocytes recovered, either with each patient considered once (r = -0.16, p = 0.46) or using all data from all patients (r = -0.13, p = 0.42) (table 3). Similarly, no significant correlations were found between serum ACE and T lymphocytes/ml of lavage fluid when each patient was considered once (r = -0.12, p = 0.58) or using all data from all patients (r = -0.14, p = 0.40) (table 3). In addition, when patients were grouped as having normal or elevated serum ACE, they showed no significant differences in mean total T lymphocytes recovered (each patient considered once, p > 0.6; all data from all patients, p > 0.5) or in T lymphocytes/ml of lavage fluid (each patient considered once, p > 0.4; all data from all patients, p > 0.4) (table 3).

Comparison of serum ACE levels with 67Ga index also demonstrated that serum ACE was not able to predict accurately the uptake of 67Ga by the lung (r = 0.32, p = 0.04, fig 2). While this p value suggests significance, the r value of 0.32 for this
Patients whose alveolitis enzyme with data crete Parameter Table significant relationship monoxide; cut-off level in one data by Low 40-1

Y measured as intensity Alveolitis "Ga

50 index. High >50 units

41-8 628%

§p

T

50 units

39-8 50 index units

Low

36-8 39 5

are presented as number of patients in each group; Chi-square analysis used. No significant differences were found in any comparison (p > 0.1, all comparisons).

Comparison of serum ACE levels with assessment of the alveolitis as measured by the combined criteria of lavage % T lymphocytes and 67Ga index demonstrated that serum ACE was not able to predict the intensity of alveolitis whether each patient was used only once (mean serum ACE ± SEM for high intensity group 133 ± 13; mean serum ACE for low intensity group 110 ± 12, p = 0.23) (fig 3);

Table 2 Comparison of lavage % T lymphocytes, 67Ga scan, alveolitis intensity, and serum angiotensin-converting enzyme with clinical and physiologic parameters of patients with pulmonary sarcoidosis*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Clinical Parameters</th>
<th>Physiological Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age (yr)</td>
<td>Sex (M/F)</td>
</tr>
<tr>
<td>% T lymphocytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤28%</td>
<td>39.8 ± 2.4</td>
<td>8/15</td>
</tr>
<tr>
<td>>28%</td>
<td>35.0 ± 2.6</td>
<td>8/10</td>
</tr>
<tr>
<td>*67Ga index</td>
<td>39.5 ± 2.7</td>
<td>5/9</td>
</tr>
<tr>
<td>≤50 units</td>
<td>36.8 ± 2.4</td>
<td>11/16</td>
</tr>
<tr>
<td>>50 units</td>
<td>33.1 ± 2.9</td>
<td>7/7</td>
</tr>
<tr>
<td>Alveolitis intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>40.1 ± 2.2</td>
<td>9/18</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*All data presented as mean ± standard error of the mean; comparisons between means made under the two-tailed Student's t test; when discrete data are presented (ie, sex, race, therapy), comparisons were made by Chi-square test.
†All data are given as % predicted, see reference 13 for details; VC: vital capacity; TLC: total lung capacity; FEV1: forced expiratory volume in one second; FEV1/VC: forced expiratory volume in one second divided by forced vital capacity; DLCO: diffusing capacity for carbon monoxide; DLCO% predicted is based on alveolar volume and haemoglobin.
‡(Y/N): Y = on corticosteroid therapy at the time of study; N = no therapy at the time of study.

**p < 0.05 between groups.
Angiotensin-converting enzyme in sarcoidosis

Table 3 Comparison of serum angiotensin-converting enzyme with lavage total T lymphocytes and T lymphocytes/ml in patients with pulmonary sarcoidosis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Each patient considered once (n = 24)</th>
<th>All data from all patients (n = 39)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td>Total T lymphocytes vs serum ACE</td>
<td>-0.16</td>
<td>0.46</td>
</tr>
<tr>
<td>T lymphocytes/ml vs serum ACE</td>
<td>-0.12</td>
<td>0.58</td>
</tr>
</tbody>
</table>

or using all data from all patients (mean serum ACE for high-intensity group 119 ± 10; mean serum ACE for low intensity group 105 ± 8, p = 0.32; data not shown). In addition, when patients were grouped as having high intensity alveolitis or low intensity alveolitis using the combined criteria of lavage % T lymphocytes and 67Ga index, serum ACE was unable to distinguish between groups (p > 0.23 with all data from all patients) (Table 1). Similarly, no conventional clinical or physiological parameter, with the exception of steroid therapy, predicted which patients would have high or low intensity alveolitis (p > 0.06, all comparisons) (Table 2). There were significantly fewer patients in the high intensity group who were on therapy at the time of study (p < 0.05); this probably resulted from the fact that corticosteroid therapy often converts high intensity alveolitis to low intensity alveolitis.4 16

Comparisons were also made between serum ACE levels, lavage % T lymphocytes, and 67Ga index on the one hand, and additional clinical parameters including fever, sedimentation rate, haemoglobin, serum globulins liver function tests, night sweats, and radiographic stage on the other. Neither serum ACE, lavage % T lymphocytes, nor 67Ga index showed any significant correlation with any of the clinical parameters listed above (data not shown).

Discussion

Angiotensin-converting enzyme is a dipeptidyl hydrolase that converts angiotensin I to angiotensin II and inactivates bradykinin. Since the initial observation that serum angiotensin-converting enzyme was elevated in pulmonary sarcoidosis,10 there has been a great deal of interest in the use of serum ACE as a measure of the activity of this disease.20–26 However, direct comparison of serum ACE levels with the intensity of the alveolitis of pulmonary sarcoidosis as assessed by lung T lymphocytes and by 67Ga scanning has shown that although serum ACE levels are elevated in many patients with this disease, serum ACE does not reflect accurately disease activity within the lung.

The lack of correlation between lung T lymphocytes and serum ACE in the present study was independent of the way in which the T lymphocyte data were expressed—that is, percentage of total
cells recovered by lavage that were T lymphocytes, total number of T lymphocytes in the lavage, or the number of T lymphocytes/ml of lavage fluid. Thus, in no case could a putative relationship between serum ACE and lung T lymphocytes explain more than 4% of the data—that is, the largest r value was 0.2. Each of these approaches estimates a somewhat different aspect of the T lymphocyte alveolitis. Percent T lymphocytes expresses the relative emphasis of the lung's immune system toward T lymphocytes, while total T lymphocytes and T lymphocytes/ml of lavage express the total burden (or density per unit volume) of T lymphocytes within the alveolar structures. Variability studies of lavage analysis have shown remarkable consistency in expressing cell data as a percentage of total lavage cells. In contrast, there have been no studies of the variability (from lobe to lobe or from day to day in a given patient) of expressing the cell data as the total number of each cell type recovered or the number of each cell type/ml of lavage fluid. In addition, although the average volumes of lavage fluid recovered among groups of patients tend to be similar, there is a wide scatter in the volume recovered for each individual. This variation is likely to be caused by lavage technique, airway geometry, and airway closure during aspiration, all of which are quite independent of either diagnosis or disease activity. Hence, while the number of T lymphocytes/ml gives a somewhat different view of the intensity of the alveolitis in sarcoidosis, there may be too much variability in this approach to gauge accurately the total burden of T lymphocyte within the alveolar structures. These factors may explain the conflicting results in the present study and others in terms of a correlation between serum ACE and the numbers of T lymphocytes recovered per ml of lavage fluid.

The failure of serum ACE to correlate with the intensity of the alveolitis is sarcoidosis may be the result of a variety of factors. First, the source of the elevated serum ACE is unclear. Studies have implicated alveolar macrophages, circulating monocytes, and the epithelioid cells of granulomatous lymph nodes as possible sources of the increased levels of serum ACE in some patients with sarcoidosis. In addition, two studies have demonstrated augmentation of ACE synthesis in tissue culture in response to corticosteroids, the very compounds suspected of lowering serum ACE levels in patients with sarcoidosis.

Second, there is a well-documented dichotomy between the peripheral and the pulmonary immune systems in sarcoidosis. Such divergence is also found in the literature specifically dealing with ACE: (1) ACE activity in lung tissue/mg protein is normal in patients with elevated serum ACE; (2) Serum ACE does not correlate with levels of ACE produced by alveolar macrophages from patients with pulmonary sarcoidosis maintained in vitro; and (3) Serum ACE does not correlate with levels of ACE in granulomatous lymph nodes from patients with sarcoidosis.

Thus, while elevations of serum ACE are common in sarcoidosis, they are not universal, and do not correlate directly with the alveolitis of the disease. Measurements of serum ACE, although rapid, simple, and non-invasive, do not distinguish patients with high intensity from those with low intensity alveolitis, and thus represent a less precise method of staging these patients. Since the alveolitis of sarcoidosis is not only the precursor of granuloma formation but also represents the reversible com-
Angiotensin-converting enzyme in sarcoidosis

ponent of the disease, it is more accurate to stage the alveolitis by lavage and by 67Ga scanning.

References

Lung inflammation in sarcoidosis: comparison of serum angiotensin-converting enzyme levels with bronchoalveolar lavage and gallium-67 scanning assessment of the T lymphocyte alveolitis.

C I Schoenberger, B R Line, B A Keogh, G W Hunninghake and R G Crystal

Thorax 1982 37: 19-25
doi: 10.1136/thx.37.1.19