Induction of bronchial hypersensitivity: evidence for a role for prostaglandins

EH WALTERS, RW PARRISH, C BEVAN, AP SMITH

From the Asthma Research Unit, Sully Hospital, and Thoracic Unit and MRC Pneumoconiosis Unit, Llandough Hospital, Penarth, South Glamorgan

ABSTRACT Bronchial hyper-responsiveness is a particular feature of asthma, but also occurs in normal subjects after a viral upper respiratory tract infection or ozone inhalation. Such stimuli would be expected to result in the release of chemical mediators of inflammation. In this study, the effects of one of these, prostaglandin F{sub 2}{alpha} (PGF{sub 2}{alpha}), on the response of normal subjects to inhaled histamine has been investigated. Nine normal volunteers took 10 inhalations of increasing concentrations of PGF{sub 2}{alpha} at 15-minute intervals from a Wright's nebuliser under standard conditions until a change in sGaw could be detected. The next lowest serial dilution of PGF{sub 2}{alpha} was subsequently inhaled by each subject every 15 min for 90 min to ensure the absence of a cumulative effect. Inhalation dose-response curves to histamine diphosphate were constructed on two separate occasions using the same standardised technique. Doses were administered every 15 min and sGaw determined five minutes after each. On one occasion each dose of histamine was immediately preceded by the non-active test dose of PGF{sub 2}{alpha} and on the second by saline as placebo. The study was performed double-blind and in random order. After pretreatment with PGF{sub 2}{alpha} the histamine dose-response curve was significantly shifted to the left in a parallel fashion (p<0.001). There was a significant decrease in the doses of histamine required to cause a 20% fall in sGaw (p<0.0015) but no significant change in the slopes of the dose-response regression lines, indicating that bronchial muscle sensitivity rather than reactivity had been predominantly affected.

Increased responsiveness of bronchial smooth muscle to a wide variety of pharmacological and non-specific stimuli is one of the most characteristic yet poorly understood features of bronchial asthma.\(^1\)\(^2\) It also occurs in normal subjects shortly after a viral upper respiratory tract infection,\(^3\) influenza vaccination,\(^4\)\(^5\) or ozone inhalation,\(^6\) and is exaggerated in atopic subjects exposed to allergen in doses insufficient in themselves to affect Airways calibre.\(^7\)

Although the participation of cholinergic reflexes is well recognised in the expression of bronchial hyper-responsiveness,\(^8\) a solely neurological mechanism could not account for all its features.\(^8\) One explanation could be that biochemical mediators of the inflammatory response might potentiate the response to reflex cholinergic stimulation. Prostaglandins (PGs) have been shown to modify responses to a variety of neurotransmitters\(^9\)\(^10\) and hormones,\(^11\) and PGF{sub 2}{alpha} potentiates the contractile response of both guinea-pig\(^12\)\(^13\) and human\(^14\) respiratory smooth muscle to a variety of bronchoconstrictor mediators.

The object of this study was to explore the possibility that PGF{sub 2}{alpha} in vivo in concentrations too low to influence bronchial muscle tone might increase the responsiveness of the airways to pharmacological stimuli. A preliminary study (Dunlop LS, personal communication) has suggested that this might be the case.

Methods

Nine normal, non-asthmatic, non-atopic adult volunteers (three women, six men; mean age 34 years, range 23 to 50 years) took part in the study after informed consent had been given. The largest dose of inhaled PGF{sub 2}{alpha} which had no effect on the Airways was determined for each subject and subsequently used as premedication during the construction of an inhalation dose-response curve to histamine.

Drugs were administered via a Wright's nebuliser,
driven by compressed air at 20 lbs/sq in and a flow of 10 l/min. A standardised inhalation procedure consisting of 10 slow tidal breaths from FRC was employed throughout.

By diluting 2·5 ml of a 5 mg/ml solution of the tromethamine salt of PGF2α (Upjohn Ltd) with normal saline, a range of solutions of PGF2α was freshly prepared before each experiment. Serial aqueous dilutions of histamine diprophosphate from 1 mg/ml to 25 mg/ml in five increments were used for construction of the histamine dose-response curves.

Airway responses, measured using a constant volume body plethysmograph, were expressed as changes in specific airways conductance (sGaw) from a baseline defined as the mean of two sets of readings obtained five minutes apart just before the first inhalation. Specific airway conductance was determined at FRC at a flow rate of less than 0·5 l/s and each recorded value represented the mean of at least six technically satisfactory measurements.

An analysis of variance of all baseline sGaw readings gave a mean intrasubject coefficient of variation of 8% and indicated that a change of 10% in the mean of six readings was significant at the 0·05 level. The lowest concentration of PGF2α resulting in such a change was determined for each subject by inhaling solutions ranging from 0·1 μg/ml to 50 μg/ml at 15-min intervals and measuring sGaw at three, five, and 10 minutes after inhalation. The next lowest concentration in the PGF2α dose range (which had given no measurable change in sGaw) was then used in subsequent experiments. To exclude a cumulative effect this test dose of PGF2α was inhaled at 15-min intervals for 90 min with measurement of sGaw at the same time points.

Inhalation dose-response curves to histamine were constructed on two separate occasions at least 48 hours apart, with doses given at 15 min intervals and sGaw measured five minutes after each. Each dose of histamine was immediately preceded by inhalation of either PGF2α or normal saline as placebo in random order and under double-blind conditions.

Statistical Analysis

The occurrence of a significant overall shift in the dose-response curves by PGF2α premedication was determined by analysis of the mean difference in response per dose of histamine between each set of dose-response curves. For each subject's pair of curves (one premedicated with PGF2α, the other with saline), the difference in response was calculated for each dose of histamine. Any difference in baseline on the two occasions was taken into account by calculating all changes from the mean baseline value. The sum of these differences in response at each dose was then divided by the number of doses tolerated by that subject to give the mean difference per dose between the two curves. The significance level for any overall change was given by Student's t test performed on these values obtained from all nine subjects. Student's t test for paired values was also performed on the values of baseline sGaw and those obtained after each dose of histamine.

Dose-response regression lines were constructed from the formula y = mx + c using the doses of histamine that caused a greater than 15% fall in sGaw from baseline, such a change being significant at the 0·01 level as indicated by the analysis of variance of baseline sGaw readings. From the individual regression lines the dose of histamine that caused a 20% fall in sGaw (D 20%) was calculated and this has been taken as an index of bronchial "sensitivity" while the slope "m" was taken as an index of bronchial "reactivity."18 The values for D 20% and the slopes of the regression lines have been analysed by Student's t test for paired values.

Results

Considerable variation in sensitivity to PGF2α was found. One subject decreased his sGaw after the 0·5 μg/ml dose and required a test concentration of only 0·25 μg/ml while five others gave no change in sGaw after the 50 μg/ml solution, the highest dose used, even on repeated administration.

There was no relationship between either age or sex and the concentration of PGF2α required to cause bronchoconstriction.

Histamine Dose-Response Studies

There was no significant difference between baseline values of sGaw on the two occasions. Histamine responsiveness varied considerably between subjects and had no relationship to individual sensitivity to PGF2α. Four subjects tolerated the full six doses up to the 25 mg/ml solution; the studies were terminated because of chest tightness in three subjects after the 15 mg/ml solution, in one subject after the 20 mg/ml solution and in one after the 10 mg/ml solution. The challenges were continued to the same dose on both occasions in all subjects.

Analysis of the mean differences per dose between the curves indicated a significant shift to the left (p <0·001) after PGF2α premedication. Differences were present (p <0·005) after PGF2α at all doses of histamine up to the 20 mg/ml solution.

The values for D 20% were significantly decreased after PGF2α (p <0·0015) but there was no significant difference between the slopes of the regression lines. These results are illustrated in the figure where the dose-response regression lines between 20% and
Induction of bronchial hypersensitivity: evidence for a role for prostaglandins

![Dose-response regression lines for histamine inhalation between 20% (D 20%) and 60% falls from baseline sGaw, with placebo premedication (-----) and PGF2α premedication (--.--.), for each subject.](image)

60% falls from baseline sGaw are shown for each individual.

Discussion

The increased responsiveness of airway smooth muscle to bronchoconstrictor agents that occurs in asthmatic patients is characterised by both a smaller dose of agonist required to cause a response (sensitivity) and a steeper slope of the dose-response curve (reactivity) compared with normal subjects. Increased bronchial responsiveness to histamine and methacholine can also be induced in normal subjects after a viral respiratory tract infection, influenza vaccination, or after ozone exposure but in these situations bronchial sensitivity is increased predominantly rather than reactivity.

Many of the circumstances such as allergen exposure, local trauma, and infection in the bronchial tree which lead to bronchial hyper-responsiveness are also those in which prostaglandins are generated in the lungs. In this study we have shown that small doses of PGF2α insufficient themselves to alter airway calibre demonstrably do potentiate the bronchoconstrictor effect of inhaled histamine and shift the dose-response curve in a parallel fashion to the left indicating that it is bronchial sensitivity which is affected rather than reactivity. In this in vivo study we were obviously unable to detect any increase in muscle tone that may have occurred without causing a change in sGaw but similar in vitro studies have demonstrated the phenomenon after PGF2α pretreatment without such an increase in basal tone.

A predominant increase in sensitivity would suggest either an increase in agonist concentration in the vicinity of bronchial smooth muscle receptor sites or an increase in activation of the receptor population by a given concentration of agonist, rather than a change in behaviour of the smooth muscle fibres distal to receptor activation. There are, however, several anatomical sites at which prostaglandins could induce bronchial hypersensitivity to histamine. Vagal irritant receptors, which are known to be activated by histamine, could have been modified to generate increased neurological activity when stimulated, or synapses in vagally mediated reflex arcs could have been altered to increase transmission. Both of these possibilities would result in a higher concentration of acetylcholine at receptor sites. Alternatively PGF2α could act to increase either the number or affinity of smooth muscle receptors.

There is some evidence in support of each of these potential sites of action. Nadel has suggested that bronchial epithelial damage and inflammation results in sensitisation of epithelial irritant receptors and that this is the underlying mechanism in all conditions of bronchial hyper-responsiveness. Prostaglandins would be released by epithelial damage and PGF2α is known to stimulate vagal sensory receptors in the lung. Some of the bronchoconstrictor effect of PGF2α in asthmatic patients can be prevented by atropine which suggests that PGF2α activates vagally mediated cholinergic reflex arcs in vivo. It is conceivable, therefore, that PGF2α could be the mediator of the bronchial epithelial irritant receptor sensitisation postulated by Nadel.

Although there is no direct evidence that PGF2α has an effect on the synapses of cholinergic reflex arcs, it is also conceivable that PGF2α could operate to increase activity at these sites to cause an increased effect of any stimulus. Prostaglandins do modify the liberation of noradrenaline by sympathetic nerve stimulation in the rabbit lung and it has been sug-
gested that they act as synaptic neuromodulators in the central nervous system possibly by an effect on intraneuronal cyclic nucleotides.10

Recent studies, however, have emphasised that post-synaptic changes are more likely to be the cause of hyper-responsiveness of the airways. The ganglionic blocker hexamethonium has been used to dissociate the pre and post ganglionic limbs of vagally-mediated reflex arcs in the lung and has shown that the changes causing hyper-responsiveness are probably at the level of smooth muscle agonist receptors.8 In vitro studies on human as well as guinea-pig airway smooth muscle strips have shown that PGF₂α increases the direct effect of constrictor agonists,12-14 and it is likely that any similar effect of PGF₂α in vivo is also situated directly at the level of the smooth muscle fibre.

Cell membrane agonist receptors are not static populations but can change either in numbers or affinity under the influence of their own agonist23 or of other agonists acting at separate receptor sites.24-27 In the airways PGF₂α could similarly modify either smooth muscle histamine receptors or acetylcholine receptors (activated via vagal reflexes) or both, resulting in the clinical observation of hypersensitivity.

References

Induction of bronchial hypersensitivity: evidence for a role for prostaglandins.
E H Walters, R W Parrish, C Bevan and A P Smith

Thorax 1981 36: 571-574
doi: 10.1136/thx.36.8.571

Updated information and services can be found at: http://thorax.bmj.com/content/36/8/571

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/