Parachute deformity of the tricuspid valve

SIMCHA MILO,† JAROSLAV STARK,‡ FERGUS J MACARTNEY,‡ AND ROBERT H ANDERSON†,‡

From the Departments of Paediatrics and Surgery, Cardiothoracic Institute, Brompton Hospital,† and the Thoracic Unit, Hospital for Sick Children,‡ London, UK

ABSTRACT A parachute deformity of the tricuspid valve occurred in a heart with atrioventricular concordance, double outlet right ventricle, and straddling mitral valve. Although to the best of our knowledge parachute deformity of the tricuspid valve has not previously been reported, in this case its presence was insignificant in relation to the other lesions.

The malformation of an atrioventricular valve in which the tension apparatus springs from a single papillary muscle or muscle group was first described by Swan et al (1949). The name “parachute” to describe the anomaly was coined by Schiebler et al (1961). Thus far, to the best of our knowledge, parachute deformity has been observed only of the morphologically mitral valve, and its association with other left-sided lesions was so frequent that Shone et al (1963) introduced the concept of the “parachute mitral valve complex.” We here describe a case of parachute deformity of the morphologically tricuspid valve in a heart further complicated by the presence of a straddling mitral valve and doubled outlet right ventricle.

Case history

A boy, born on 26 April 1968, was the product of a full-term, normal delivery and weighed 2800 g at birth. He failed to thrive, and at the age of 5 weeks was first admitted to hospital, suffering from upper respiratory tract infection and vomiting. At age 10 weeks he weighed only 3700 g. In August 1968 he was admitted to the Hospital for Sick Children at Great Ormond Street for investigation. He was underweight and undersized for his age. There was slight dyspnoea and central cyanosis. All peripheral pulses were palpable. There was evidence of right ventricular hypertrophy, and a systolic thrill and pansystolic murmur down the left sternal edge. There was also a soft apical mid-diastolic murmur. The child was not in congestive heart failure. Radiological examination of the chest showed an enlarged heart with plethoric lung fields. ECG showed a P-pulmonale with biventricular hypertrophy and left ventricular predominance. Catheterisation and angiography (table a) were interpreted as showing transposition of the great arteries with ventricular septal defect. A Rashkind atrial septostomy was performed. The child improved and was transferred back to his home town hospital. He was reviewed as an outpatient and admitted again in September 1970 when a second cardiac catheterisation was performed (table b). After this it was decided that a pulmonary-systemic-shunt was necessary, and on 22 April 1971 a right Waterston procedure was performed. The child did well until September 1973, when the shunt murmur was no longer audible and he again became cyanosed. He was restudied on 15 February 1974 (table c) and after this he was considered for a Rastelli operation, which was performed on 5 December 1974. On opening the ventricle, the finding was of a large anterior ventricular chamber with straddling of the papillary muscles and the chordae tendineae of the mitral valve of both sides of the rudimentary ventricular septum through an anterior defect. Repair therefore proceeded by constructing a new interventricular septum within the anterior ventricle which returned the straddling part of the mitral valve to the left ventricle and directed left ventricular blood to the aorta. The pulmonary valve was then closed and a conduit placed from the right ventricle to the pulmonary artery. A second, posterior ventricular septal defect unrelated to the straddling valve was identified and closed. After these procedures cardiopulmonary

SM was a visiting fellow from the Chaim Sheba Medical Center, Israel, supported by the Lewis Fellowship Fund; FJM is supported by the Vandervell Trust together with the British Heart Foundation; and RHS is supported by the Joseph Levy Foundation together with the British Heart Foundation.
by-pass was terminated satisfactorily, but his cardiac performance deteriorated after the operation. Because of suspicion of cardiac tamponade a re-exploration was carried out but the pericardial sac was dry. His condition continued to deteriorate and despite vasopressor support he died 24 hours later.

Necropsy findings

Only the heart and great arteries were examined. There was situs solitus of the atria, the apex was to the left, and the aortic arch left sided. The venous connections were normal, and atrioventricular concordance was present, the ventricles being normally positioned. The atrial septum was intact. Two patches had been placed in the ventricles, one closing a posterior defect and the other diverting left ventricular blood to the right-sided anterior aorta. A conduit had been placed from the remainder of the right ventricle to the pulmonary artery. All suture lines were intact. Removal of the patches showed the ventricular morphology. The morphologically right ventricle was a large chamber receiving the tricuspid valve and part of a straddling mitral valve, and giving rise to both great arteries. Two ventricular septal defects were present, a posterior muscular inlet defect (fig 1a) and an anterior, larger, subpulmonary defect (fig 2). The tricuspid valve ex-

<table>
<thead>
<tr>
<th>Haemodynamic data</th>
<th>Dynamic Mean pressure</th>
<th>Dynamic Mean pressure</th>
<th>Preoperative data a</th>
<th>Preoperative data b</th>
<th>Preoperative data c</th>
<th>Operating room pressures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pre-Rashkind</td>
<td>Post-Rashkind</td>
<td>15.2.74</td>
<td>5.12.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>procedure</td>
<td>procedure</td>
<td>(age: 5 yr 10 mth)</td>
<td>(age: 6 yr 8 mth)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right atrial pressure</td>
<td>a = 4</td>
<td>a = 4</td>
<td>a = 10</td>
<td>v = 8</td>
<td>x = 4</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>v = 4</td>
<td>v = 2</td>
<td>y = 1</td>
<td>8</td>
<td>4</td>
<td>35-40 syst</td>
</tr>
<tr>
<td></td>
<td>x = 4</td>
<td>x = 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>y = 2</td>
<td>y = 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right ventricular pressure</td>
<td>112/−4−4</td>
<td>96/0-2</td>
<td>110</td>
<td>110/6</td>
<td>105</td>
<td>35-40 syst</td>
</tr>
<tr>
<td>Pulmonary artery pressure</td>
<td>46//23</td>
<td>14/10</td>
<td>12</td>
<td>8/2</td>
<td>4</td>
<td>18/10</td>
</tr>
<tr>
<td>Central aortic pressure</td>
<td>100/46</td>
<td>96/38</td>
<td>65</td>
<td>100/60</td>
<td>75</td>
<td>110/80</td>
</tr>
<tr>
<td>Left ventricular pressure</td>
<td>100/4-8</td>
<td>118/−2−2+2</td>
<td>110</td>
<td>100/60</td>
<td>75</td>
<td>75-80 syst</td>
</tr>
<tr>
<td>Left atrial pressure</td>
<td>a = 14</td>
<td>a = 6</td>
<td>a = 6</td>
<td>v = 8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>v = 9</td>
<td>v = 4</td>
<td>v = 8</td>
<td>4</td>
<td>4</td>
<td>13-15</td>
</tr>
<tr>
<td></td>
<td>x = 5</td>
<td>x = 4</td>
<td>x = 0</td>
<td>y = 0</td>
<td>y = 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y = 4</td>
<td>y = 2</td>
<td>y = 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 1 (a) illustrates right atrium (RA) and right ventricle (RV). Cusps and chordae of tricuspid valve (TV) converge into a single papillary muscle group (Single PMG). (b) shows a detail of tricuspid valve (TV) taking form of a parachute. An inlet ventricular septal defect (Inlet VSD) is pictured posterior to valve.
Parachute tricuspid valve

Fig 2 (a) illustrates left atrium (LA) and left ventricle (LV). There is a large anterior ventricular septal defect (Ant VSD) over which mitral valve straddles (Str MV). (b) shows the right ventricle (RV) with the parachute tricuspid valve (TV) and straddling papillary muscles of mitral valve (Str MV) next to it. This ventricle gives rise to aorta (AO) and to pulmonary outflow tract (arrow).

Fig 3 Shows the relation of the parachute tricuspid valve (TV), and straddling mitral valve (Str MV) to pulmonary outflow tract (POT), which is “squeezed” between them and is partially bridged by a fibrotic ring (Fibr ring). (Ao-aorta).

Discussion

A parachute deformity of an atrioventricular valve, as first described by Swan et al (1949) and later correlated to specific associated malformations by Shone et al (1963) has always referred, to the best of our knowledge, only to the morphologically mitral valve. Indeed, Shone et al (1963) emphasised that the complex of supravalvar ring of left atrium, subaortic stenosis, and coarctation of the aorta, which they termed the parachute mitral valve complex, was associated with the arterial side of the heart and vascular system. Schiebler and associates observed a parachute anomaly affecting the right atrioventricular valve in corrected transposition as did El Sayed et al (1962), but of course the right atrioventricular valve in corrected transposition is the morphologically mitral valve.
Our case shows that a parachute deformity can equally affect the tricuspid valve, although its presence is likely to be less significant than a similar deformity of the systemic atrioventricular valve. Indeed, in our case the parachute deformity of the tricuspid valve was a bagatelle in terms of the problems facing the surgeon. These were the straddling mitral valve, the severe pulmonary outflow tract obstruction, and the second, posterior inlet ventricular septal defect. Although the anatomy was correctly identified, and although the ventricular patch redirected left ventricular blood to the aorta and restored the straddling portion of the mitral valve to the left ventricle, the patient did not survive. Possibly after the reconstitution the straddling valve blocked egress through the newly constructed left ventricular outflow tract. Since straddling of the mitral valve occurs with some frequency in association with double outlet right ventricle and subpulmonary defect (Kitamura et al, 1974), atrial redirection of blood, septation of the right ventricle as described above, and a conduit from the left ventricle to the pulmonary artery may be an alternative procedure to be considered for correcting these cases.

Addendum

Since submitting this paper we have read the report by Ariza et al (1979) describing a parachute deformity of the tricuspid valve in association with tetralogy of Fallot.

References

Requests for reprints to: Dr R H Anderson, Department of Paediatrics, Cardiothoracic Institute, Brompton Hospital, Fulham Road, London SW3 6HP.
Parachute deformity of the tricuspid valve.

S Milo, J Stark, F J Macartney and R H Anderson

Thorax 1979 34: 543-546
doi: 10.1136/thx.34.4.543

Updated information and services can be found at:
http://thorax.bmj.com/content/34/4/543

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/