Study of immunoglobulins in pleura and pleural effusions

L TELVI,1 F JAUBERT,2 A EYQUEM,3 J P ANDREUX,4 F LABROUSSE,4, AND J CHRÉTIEN1

From the FRA n° 16, INSERM (Laboratoire de Pathologie Pleuro-Pulmonaire), Hôpital Laënnec,1 Laboratoire Central d’Anatomo-Pathologie, Hôpital Necker-Enfants Malades,2 Laboratoire d’Immuno-Hématologie et d’Immuno-Pathologie, Institut Pasteur,3 and Laboratoire Central de Biochimie, Hôpital Laënnec,4 Paris, France

ABSTRACT The protein concentration of 35 pleural effusions was compared with that in the serum. The ratio of the pleural and serum concentration of albumin, IgG, IgA, and IgM is always below unity and appears to have no diagnostic value. However, the ratio of the concentration of these proteins was inversely related to their molecular weight. The underlying mechanism in malignant and inflammatory effusions appear similar and is in keeping with a diffusion process. Immunofluorescent staining of the pleura suggests the intercellular passage of the proteins through the mesothelial barrier.

There are very few reports of the distribution of plasma proteins in pleural effusions. The 52 cases studied by Zinneman et al (1957) showed a fair separation between transudate and exudate. All the plasma protein fractions contained in pleural effusion were in a distribution similar to that in the serum. In nine cases reported by Hirsch et al (1971) it was concluded that the immunoglobulin concentration in the pleural effusion was low compared with their amount in the serum. We compared the amount of serum protein in malignant and non-malignant pleural effusions with their level in the serum.

Methods

Pleural effusions were collected from 35 patients during one year. Total protein was measured by the biuret reaction. Albumin was measured by electrophoresis and the percentage calculated in relation to total protein. IgG, IgA, IgM, and IgD levels were measured by single radial immunodiffusion on plates (Behring). The results were expressed in mg/100 ml. IgE concentration was determined by radioimmunoassay and expressed in IU/100 ml.

Pleural biopsies were performed in 18 of the patients with an Abrams pleural punch biopsy needle. One piece from each was processed for immunofluorescence. The parietal pleural biopsy performed during a thoracotomy for lung biopsy was used as a control.

These fragments were immediately embedded in a cube of Cryoform TM (Damon Inc Division) and frozen instantaneously with liquid nitrogen. These cubes were stored at −20°C until required. The embedded fragments were then cut in a Cryostat (Damon CTD Harris) at −20°C into 4 μm sections, laid on microscopic glass slides, and fixed for 10 minutes in absolute ethanol at +20°C. These sections were treated by a direct immunofluorescent method using monospecific serum labelled specifically for human IgG, IgA, IgM, IgE (Hyland), and IgD (Behring). The sera were tested before use by immunoelectrophoresis with standard normal human serum (Behring). The sections were incubated with the conjugates diluted to 1/5, 1/10, and 1/20 for 30 minutes at 20°C, rinsed with two baths of Coons buffer, pH 7.4, for 15 minutes each, and were mounted in glycerol at 50%.

A Leitz fluorescence microscope was used for observation.

Results

PLEURAL EFFUSION PROTEINS

The 35 effusions were exudates, having a pleural fluid protein concentration greater than 3 g/100 ml. They were divided into three groups according to the causal lesion: 14 were of carcinomatous origin, 10 tuberculous, and 11 miscel-
Laneous inflammatory conditions.

The levels of proteins in the pleural effusions were divided by the amount of protein in the corresponding serum to give the ratio C.

The different proteins were put in order according to their molecular weight. The filtration coefficient C used was always below unity. The mean level of C was inversely related to the molecular weight of the proteins involved (fig 1). Analysis of the results showed that the statistical differences between albumin (m=0.68) and IgM (m=0.50) and between IgG (m=0.65) and IgM (m=0.50) were significant (P<0.02).

In contrast the comparison of the different C ratios according to the aetiological group of the pleural effusion did not give significant results (fig 2).

IMMUNOFLUORESCENCE STAINING ON PLEURAL BIOPSIES

In all pathological cases the continuous barrier of mesothelial cells had disappeared except in some focal areas, and inflammatory cells were observed. Interstitial and vascular fluorescence for IgG, IgA, and IgM was seen. The results were estimated from (+) to (+++) according to the fluorescent intensity observed at the same dilution level (1/10), and the results obtained matched the biochemical measurements (see table). Plasmacytes were observed in some cases (fig 3). No fluorescence was seen for IgE and IgD and no nuclear fluorescence was observed in any case. These results show that immunoglobulins are probably absorbed in the pleural interstitium.

In the parietal pleural biopsy performed during a thoracotomy the barrier of mesothelial cells was present and their surfaces and the intercellular spaces were outlined, but no intracellular fluorescence was observed (fig 4).

Discussion

The results obtained by the measurement of serum and pleural effusion proteins lead to the following conclusions.

In accordance with the work of Chrétien (1970, 1972) the level of the different protein classes studied did not have a diagnostic value for
Immunofluorescent staining on pleural biopsy (IFS on PIB) graded from (+) to (+++) according to fluorescent intensity observed at same dilution level (1/10), related to aetiology and to serum protein level for IgG. Serum and pleural effusion levels of proteins are expressed in mg/100 ml

<table>
<thead>
<tr>
<th>Case no</th>
<th>Aetiologies</th>
<th>IgG</th>
<th>IgA</th>
<th>IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serum level</td>
<td>IFS on PIB</td>
<td>Pl Eff level</td>
<td>Serum level</td>
</tr>
<tr>
<td>27</td>
<td>Tuberculous disease</td>
<td>1930</td>
<td>+ + +</td>
<td>460</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>1590</td>
<td>+ + +</td>
<td>1020</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1490</td>
<td>+ + +</td>
<td>900</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1290</td>
<td>+ + +</td>
<td>970</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>800</td>
<td>+ + +</td>
<td>1150</td>
</tr>
<tr>
<td>16</td>
<td>Carcinomatous disease</td>
<td>2000</td>
<td>+ + +</td>
<td>1000</td>
</tr>
<tr>
<td>1b</td>
<td></td>
<td>1990</td>
<td>+ + +</td>
<td>830</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1670</td>
<td>+ + +</td>
<td>470</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>1420</td>
<td>+ + +</td>
<td>1170</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1340</td>
<td>+ + +</td>
<td>46</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>590</td>
<td>+ + +</td>
<td>510</td>
</tr>
<tr>
<td>18</td>
<td>Miscellaneous Inflammatory</td>
<td>2280</td>
<td>+ + +</td>
<td>2050</td>
</tr>
<tr>
<td>disease</td>
<td></td>
<td>1450</td>
<td>+ + +</td>
<td>1000</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1450</td>
<td>+ + +</td>
<td>900</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>1240</td>
<td>+ + +</td>
<td>370</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>1140</td>
<td>+</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND = Not done.

Fig 3 Immunofluorescence staining for IgG of pleura from a patient with effusion. Continuous barrier of mesothelial cells has disappeared and some plasma cells are present (arrow). Interstitial fluorescence was observed (×40).

The comparison of the amount of IgG between the carcinomatous and the tuberculous groups showed no statistical difference. We did not observe in our patients the differences reported by Kay et al (1976), though these authors expressed their results is IU of immunoglobulin per mg protein and are thus not strictly comparable with ours.

The level of serum protein in the pleural effusion was always below that in the corresponding serum. Our findings are in accordance with those reported by Zinneman et al (1957), Hirsch et al (1971), and Agostini and Marasini (1977). The C ratio as related to the molecular weight of the protein and the differences for albumin, IgG, and IgM were statistically significant (p<0.02). The rate of diffusion is different according to the molecular or physical properties of that substance. Sodium and para-aminohippuric acid have a rapid elimination and are reabsorbed by the capillaries of visceral pleura (Agostini, 1969; Stewart, 1963). Proteins from pleural effusions are removed by the lymphatics as found in dogs by Stewart and Burgen (1958), and in cats by Courtice and Simmonds (1949). In patients with pleural effusion a breakdown of the equilibrium between the entry and the output of fluid and proteins from the pleural space has been well documented by Stewart (1963), using para-aminohippuric acid and protein labelled T 1824. An exclusive lymphatic reabsorption process was suggested for albumin. However, the immunoglobulin removal mechanism from the pleural space was not specified.

Our results show that the immunoglobulins...
diffuse in the same way as the other serum proteins, in inverse relation to their molecular weight.

The similarity of the fluid composition, whatever the pathological process, shows a similar mechanism of constitution for the different kinds of pleural effusion. It may be related to the release of inflammatory mediators in response to vascular obstruction (Meyer, 1966) or to an immunological reaction of the host against a tumour or an infection. These facts agree with the results of Agostini and Marasini (1977).

The results obtained by immunofluorescent staining show the interstitial location of the plasma proteins and their intercellular passage through the mesothelial barrier. There was no demonstration of active intracellular transport.

The involvement of the mesothelial cell barrier in the protein exchange of pleural fluid is not well defined; it may be related to an active opening of the intercellular spaces by contraction as reported for the endothelial cells (Ryan and Maino, 1977) or to the destruction of the mesothelial barrier as in the present study. The action of the pleural interstitium in the serum and pleural exchanges for fluids and proteins remains ill-defined.

References


Requests for reprints: Dr J Chrétien, FRA no 16, INSERM (Laboratoire de Pathologie Pleuro-Pulmonaire), Hôpital Laennec, 42 rue de Sèvres, 75007–Paris.
Study of immunoglobulins in pleura and pleural effusions.

L Telvi, F Jaubert, A Eyquem, J P Andreux, F Labrousse and J Chrétien

Thorax 1979 34: 389-392
doi: 10.1136/thx.34.3.389

Updated information and services can be found at:
http://thorax.bmj.com/content/34/3/389

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/