Correction of type C atrioventricular canal associated with tetralogy of Fallot

P BASTOS, M DE LEVAL, F MACARTNEY, AND J STARK

From the Thoracic Unit, The Hospital for Sick Children, London, UK

Bastos, P, de Leval, M, Macartney, F, and Stark, J (1978). Thorax, 33, 646–648. Correction of type C atrioventricular canal associated with tetralogy of Fallot. Type C complete atrioventricular canal associated with tetralogy of Fallot in a 5-year-old child was successfully corrected. Repair of the atrioventricular canal was combined with infundibular resection and the insertion of an outflow tract patch across the pulmonary valve ring. The postoperative course was uneventful, and the child is well one year after operation.

The association of complete atrioventricular canal with tetralogy of Fallot is a rare combination occurring in less than 5% of patients with complete endocardial cushion defects (Fisher et al, 1975). The operative risk for patients with isolated tetralogy of Fallot or atrioventricular canal is now acceptable. In the past two years we have operated on 89 children with tetralogy of Fallot, with four deaths (4.5%), and 15 children with complete atrioventricular canal, with three deaths (20%).

The purpose of this report is to present a 5-year-old child with type C atrioventricular canal associated with tetralogy of Fallot. Both defects were successfully corrected.

Case report

The patient, a baby girl, was born after a 39-week gestation. The pregnancy was complicated by pre-eclamptic toxaemia. The mother, aged 40, had had nine previous pregnancies, five of which ended in miscarriage. The clinical features of Down's syndrome were recognised at birth and confirmed by chromosome studies. The child developed heart failure and was treated with digoxin. At 11 weeks of age cyanosis was noticed, and she started to have occasional cyanotic spells. She was referred to our hospital at the age of 16 months. A clinical diagnosis of tetralogy of Fallot was confirmed by cardiac catheterisation and biventricular angiocardiography, and so a left Blalock-Taussig shunt was performed. The child did not improve after the operation, and no shunt murmur was audible. A Waterston shunt was performed, and this produced significant improvement.

Cyanotic spells returned one year later, however, and treatment with propranolol was started. She was readmitted for assessment before corrective surgery at the age of 3 ½ years. The angiocardiographic features of tetralogy of Fallot were confirmed. The arterial oxygen saturation was 86%, but the child was having occasional cyanotic spells. The presence of an atrioventricular canal was not suspected, although in retrospect this could have been diagnosed from the angiocardiogram. The posterior attachment of the mitral component of the valve was abnormally positioned, and a common atrioventricular orifice straddling the ventricular septum was visible on the lateral right ventricular angiocardiogram. The left Blalock-Taussig shunt was not patent, and the aortopulmonary shunt was functioning but small. Two days after cardiac catheterisation the child developed a right-sided hemiplegia and therefore corrective surgery was deferred until a year later when she had recovered completely from this.

On examination, the features of Down's syndrome were noted. She was cyanosed and had clubbed fingers. There was a 2/4 systolic murmur at the left sternal edge and a continuous shunt murmur audible at the right side of the sternum and over the right chest. Her haemoglobin was

1This work was supported in part by Grant No 583 from the British Heart Foundation.
18·4 g/dl and PCV 53%. The electrocardiogram showed a long PR interval, P pulmonale, a QRS mean axis of +210° with a clockwise loop in the frontal plane, and severe right ventricular hypertrophy. The radiographic heart size and lung markings were normal.

The operation was performed in February 1977 when she was 5 years old and weighed 15 kg. Propranolol was discontinued ten days before operation. The Waterston shunt was dissected and temporarily occluded. Cardiopulmonary bypass was instituted and the temperature of the perfusate lowered to 25°C. The aorta was crossclamped and the aortic root perfused with cold (4°C) Ringer's solution. The aorta was then opened and the Waterston shunt closed with mattress stitches. Inspection of the anatomy through the right atrium showed a free floating anterior common leaflet without chordal attachment to the ventricular septum (type C complete atrioventricular canal of the Rastelli classification (Rastelli et al, 1966)). Typical features of Fallot's tetralogy were also found, that is to say an anteriorly deviated infundibular septum producing infundibular and valvar pulmonary stenosis and an overriding aorta.

A vertical right ventriculotomy was performed and an infundibular resection carried out. The ventriculotomy was extended across the hypoplastic pulmonary valve annulus, and a woven Dacron patch was sutured into the left pulmonary artery and the ventriculotomy. After this, repair of the atrioventricular canal was performed through the right atrium using the technique described by Rastelli and associates (Rastelli et al, 1968). The common leaflet was divided into the mitral and tricuspid components. The cleft in the mitral valve was closed with fine single stitches and then a patch of Dacron velour was sutured to the right side of the ventricular septum. Special care was taken not to create subaortic narrowing, which appeared to be a possibility because of the dextroposed aorta that was overriding the ventricular septum. The mitral and tricuspid portions of the common leaflet were then attached to the patch at the expected level of the upper margin of the ventricular septum with single mattress stitches of 5-0 ethiflex. The atrial portion of the defect was closed with the upper part of the Dacron patch using a continuous prolene stitch. The coronary sinus was left on the left side of the patch to avoid the conducting tissue.

The right atrium was closed and the aortic clamp removed after evacuation of air from the ascending aorta and left ventricle. When the patient was rewarmed, bypass was discontinued without difficulty. Intracardiac pressures were satisfactory (see table). The patient was intubated with a nasotracheal tube and ventilated for 48 hours. Weaning from the ventilator was achieved through a constant positive airway pressure system. Inotropic support was given for the first two days. The postoperative course was uneventful.

She was discharged on the 16th postoperative day, and was taking digoxin, frusemide, and potassium supplements. Her subsequent progress was excellent, the diuretics were discontinued, and at present (12 months after operation) she is pink, fully active, and shows no signs of heart failure. The electrocardiogram shows sinus rhythm and the chest radiograph shows only moderate cardiomegaly.

Discussion

The association of complete atrioventricular canal and tetralogy of Fallot was first described by Bull in 1885 and more recently by Mouquin et al in 1956. It is a rare combination that would appear to occur more often when the atrioventricular canal is of type C (Fisher et al, 1975; McCabe et al, 1977). McMullan et al (1972) described four patients with valvar and infundibular stenosis in their group of 27 patients with complete atrioventricular canal treated surgically. Not enough details were provided to say whether these had tetralogy of Fallot associated with atrioventricular canal or just valvar or infundibular pulmonary stenosis.

These combined malformations could be correctly diagnosed before operation. Sometimes, as in our case, the complete diagnosis may be missed. Suspicion should be raised in patients with tetralogy of Fallot and features of Down's syndrome. A loud systolic murmur, radiating more widely than in patients with tetralogy, and a separate systolic murmur from mitral or tricuspid regurgitation may be present (Tandon et al, 1974). Left axis deviation in the electrocardiogram with a counter-clockwise loop in the frontal plane.

References

Requests for reprints to: J Stark, MD, Thoracic Unit, The Hospital for Sick Children, Great Ormond Street, London WC1N 3 JH.