Chylothorax: report of a case complicating ductus ligation through a median sternotomy, and review

T. K. KAUL, W. H. BAIN, M. A. TURNER, and K. M. TAYLOR

University Department of Cardio-Thoracic Surgery, Royal Infirmary, Glasgow

Kaul, T. K., Bain, W. H., Turner, M. A., and Taylor, K. M. (1976). Thorax, 31, 610–616. Chylothorax: report of a case complicating ductus ligation through a median sternotomy, and review. An unusual case of chylothorax is described in a 4-year-old child after repair of a ventricular septal defect and ligation of a patent ductus arteriosus through a median sternotomy. Left chylothorax developed after a latent period of six days and was treated initially with continuous drainage and parenteral supplementation of proteins and lipids. Operative intervention with oversewing of the site of the leak in the anterior mediastinum proved necessary after three weeks. The anatomical variations of the thoracic duct are outlined to explain the occurrence of chylothorax after diverse intrathoracic operations. The physiological effects of a thoracic duct fistula and various aspects of management are reviewed.

Chylothorax was first described by Bartolet in 1633. Subsequent reviews of chylothorax are summarized in Table I.

Post-thoracotomy chylothorax has usually followed procedures carried out in close proximity to the normal anatomical course of the thoracic duct. It is rare for this complication to follow surgical procedures in areas remote from the thoracic duct (Maloney and Spencer, 1956; Garakalla, 1958; Glenn et al., 1965; Tandon, 1968).

This communication describes an unusual case of chylothorax resulting from injury to the left internal thoracic lymph trunk, which allowed retrograde flow of chyle from the thoracic duct via the left bronchomediastinal trunk. The anatomical, physiological, and aetiological aspects of thoracic duct injury are reviewed and the management of iatrogenic chylothorax is discussed.

CASE REPORT

A 4-year-old girl underwent closure of a ventricular septal defect and ligation of patent ductus arteriosus on 1 April 1974. Preoperatively she was ill with severe pulmonary hypertension and incipient cardiac failure. Surgical approach was through a median sternotomy, the ductus was doubly ligated, and the ventricular septal defect was closed during heart-lung bypass. The early postoperative period was uneventful.

On the sixth postoperative day she became acutely short of breath and hypoxic with signs of peripheral circulatory failure. A chest radiograph showed a mediastinal opacity, fluid in the left chest, and partial collapse of the left lung.

She improved after tracheostomy, the insertion of an intercostal drain into the left pleural space, and re-inflation of the left lung. At the time of insertion, the chest drain yielded 400 ml of creamy fluid. The child was not toxic, had no elevation of temperature, and had a normal white cell count. The fluid was sterile on culture; microscopy revealed no pus cells or micro-organisms but showed the presence of lymphocytes and chylomicrons. The diagnosis of chylothorax was thus established.

For the next 18 days drainage of chyle continued at a fairly constant rate, averaging 265 ml/24 hours. That is, about 10% of her blood volume per day. Towards the end of the third week drainage showed no signs of abatement; 4.6 litres of chyle had been lost and serial blood
<table>
<thead>
<tr>
<th>Authors</th>
<th>Number of Cases</th>
<th>Side</th>
<th>Aetiology</th>
<th>Spontaneous</th>
<th>Management</th>
<th>% Overall Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>L</td>
<td>Bilateral</td>
<td>Surgical Penetrating</td>
<td>Conservative Ligation of Duct Others^</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Injuries Blunt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgical Injuries</td>
<td></td>
<td></td>
<td>Injuries</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shakesford and Fisher</td>
<td>41</td>
<td>21</td>
<td>14</td>
<td>6</td>
<td>—</td>
<td>20</td>
</tr>
<tr>
<td>(1938)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lampson (1948)</td>
<td>18</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Baffes and Potts (1954)</td>
<td>4</td>
<td>—</td>
<td>4</td>
<td>—</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Goorwicz (1955)</td>
<td>31</td>
<td>16</td>
<td>13</td>
<td>2</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Brewer (1955)</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Maloney and Spencer</td>
<td>13</td>
<td>5</td>
<td>8</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>(1956)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nix et al. (1957)</td>
<td>123</td>
<td>53</td>
<td>42</td>
<td>21</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>Schmidt (1959)</td>
<td>92</td>
<td>—</td>
<td>unknown in 7 cases</td>
<td>—</td>
<td>42</td>
<td>4</td>
</tr>
<tr>
<td>Bower (1964)</td>
<td>19^</td>
<td>5</td>
<td>13</td>
<td>3</td>
<td>7</td>
<td>—</td>
</tr>
<tr>
<td>Williams and Burford</td>
<td>11</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(1964)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decazes (1965)</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7</td>
</tr>
<tr>
<td>Gingell (1965)</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Glenn et al. (1965)</td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Jones (1965)</td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>Higgins and Mulder</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>—</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>(1971)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cevese et al. (1975)</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>—</td>
</tr>
</tbody>
</table>

^1Cases treated by lymphovenous anastomosis, aspiration, and radiotherapy and aiming at pleurodesis using iodised talc.
^2Nil in surgical treated.
^3In cases treated with ligation of duct.
^4In patients with traumatic chylothorax only.
^5More than one episode of chylothorax.
analysis showed progressive depletion of fats, proteins, and lymphocytes (Table II).

On the 19th day, the intercostal drain ceased to function and chyle reaccumulated in the left pleural cavity. The chest was explored through a left anterolateral thoracotomy. The site of ligation of the ductus arteriosus was explored but no leak was found. On further exploration chyle was seen to be seeping from the anterosuperior mediastinum from what appeared to be a left parasternal lymph node, and on pressure a jet of chyle was seen to escape from this structure. This was excised and its pedicle oversewn. The chest was closed with conventional intercostal drainage. After this operation no further chyle appeared in the pleural fluid, and the child went home 10 days later. The total period in hospital was 28 days. During her postoperative recovery, serum proteins and lipids and lymphocyte count rose steadily to preoperative levels and she gained weight.

ANATOMICAL COURSE AND VARIATIONS OF THORACIC DUCT

COURSE The thoracic duct begins at the upper end of the cisterna chyli near the lower border of the 12th thoracic vertebra and enters the thorax through the aortic opening of the diaphragm. It ascends through the posterior mediastinum and, opposite the fifth thoracic vertebra, inclines to the left, enters the superior mediastinum, and runs along the left side of the oesophagus. Passing into the neck, it ascends 3–4 cm above the clavicle and finally descends to open into the jugulosubclavian junction.

VARIATIONS Van Pernis (1949) described the variations of thoracic duct encountered in 1081 postmortem specimens. A single duct was found in 663 cases (61.3%); two or more branches, which may form a plexiform interlacement, were found in 418 cases (38.7%) (Fig. 1). The level of crossing from right to left was at the fifth thoracic vertebra in 480, and at the sixth vertebra in 601 cases. Below the level of crossing, thoracic duct fistula usually results in right-sided chylos effusion, and above this level in a left-sided effusion (Ross, 1961).

TERMINATION The duct terminates by entering the internal jugular, subclavian or innominate vein. The duct may enter the vein via one or more terminal endings (Greenfield and Gottlieb, 1956). A number of variations have been described at the site of termination (Greenfield and Gottlieb, 1956; Romanes, 1972).

The thoracic duct contains valves which correspond to the site of possible external pressure. Those at the cephalic end are not always competent (Basmajian, 1971), and a retrograde flow of chyle is possible (Thomas and McGoon, 1971).

TRIBUTARIES (Fig. 2) The important tributaries are the left jugular, subclavian and, occasionally, the left bronchomedial lymph trunks. Efferents from the tracheobronchial and bronchopulmonary nodes join to form the bronchomedial trunks. The anterior mediastinal lymph nodes, which are scattered in front of the innominate vein, send their efferents, with those of the parasternal nodes, to join the bronchomedial trunk. The bronchomedial trunk on the left side begins at the root of the lung and ascends lateral to the ductus arteriosus and the arch of aorta. Here it is immediately anterior to the vagus nerve. Continuing in a cephalic direction, it joins a large plexus of lymph vessels

<table>
<thead>
<tr>
<th></th>
<th>Total Proteins (g/l)</th>
<th>Albumin (g/l)</th>
<th>Globulins (g/l)</th>
<th>Triglycerides as Triolein (mmol/l)</th>
<th>Cholesterol (mmol/l)</th>
<th>Lymphocyte Count</th>
<th>Body Wt (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preop.</td>
<td>70</td>
<td>50</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>2500</td>
<td>15</td>
</tr>
<tr>
<td>Chyle leak 2nd day</td>
<td>54</td>
<td>30</td>
<td>24</td>
<td>1·46</td>
<td>4·25</td>
<td>1800</td>
<td>15</td>
</tr>
<tr>
<td>Chyle leak 8th day</td>
<td>58</td>
<td>30</td>
<td>24</td>
<td>1·41</td>
<td>5·4</td>
<td>1680</td>
<td>14·5</td>
</tr>
<tr>
<td>Chyle leak 16th day</td>
<td>57</td>
<td>37</td>
<td>26</td>
<td>1·26</td>
<td>2·83</td>
<td>1200</td>
<td>14·2</td>
</tr>
<tr>
<td>Chyle leak closed 2nd day</td>
<td>53</td>
<td>37</td>
<td>21</td>
<td>1·46</td>
<td>3·74</td>
<td>1530</td>
<td>14·2</td>
</tr>
<tr>
<td>Chyle leak closed 5th day</td>
<td>57</td>
<td>32</td>
<td>25</td>
<td>2·09</td>
<td>5·34</td>
<td>1840</td>
<td>14·5</td>
</tr>
<tr>
<td>Chyle leak closed 10th day</td>
<td>68</td>
<td>40</td>
<td>28</td>
<td>2·25</td>
<td>6·5</td>
<td>2400</td>
<td>15·2</td>
</tr>
</tbody>
</table>

Conversion: SI to traditional units—Triglycerides: 1 mmol/l = 88·5 mg/100 ml.
Cholesterol: 1 mmol/l = 38·6 mg/100 ml.
Variations of thoracic duct in 1081 cases (Van Pernis 1949)

FIG. 1. Variations of thoracic duct (From Van Pernis (1949)).

physiological considerations

About 1500–2400 ml of chyle empties into the venous system daily in an adult. This flow is increased by food or fluid intake and is reduced by starvation. The forward flow of chyle is influenced by intra-abdominal and intrathoracic pressure changes, smooth muscle contractions of the duct wall, adjacent arterial pulsations, and the blood flow in the great veins (Bower, 1964).

Chyle is a milky or creamy white, odourless fluid. Its specific gravity varies between 1·012 and 1·020 (Nix et al., 1957). Its appearance is considerably altered by changes in the diet and its fat content. In starvation and while the patient is on a fat-free diet it appears thin and watery.

The thoracic duct is the main pathway for the return of fats and extracellular plasma proteins to the circulation. Fats are absorbed as chylomicrons (5 μ in diameter) composed essentially of triglycerides (81–97%), cholesterol, and phospholipids (Wiseman, 1964). The majority of the fatty acids containing more than 10 carbon atoms are returned through the thoracic duct as esterified fatty acids. Fatty acids with fewer than 10–12 carbon atoms are transported into the portal venous blood as unesterified or free fatty acids (Wiseman, 1964).

The electrolyte, protein, lipid, and sugar contents of chyle may approximate to those of serum but are subject to wider variation with diet (Crandall, Barker, and Graham, 1943). Lymphocytes predominate as its cellular element (Bower,
fact that empyema rarely complicates chylothorax.

A continuing loss of chyle results in severe wasting and may eventually lead to death. Little, Harrison, and Blalock (1942) described a patient who sustained a loss of 500 litres of chyle over 18 months and in whom 158 litres of chyle (protein content 25 g/day) was removed in a six-month period.

AETIOLOGY OF CHYLOTHORAX

The various causes of chylothorax have been classified by Nix et al. (1957) and Bower (1964). Traumatic and neoplastic involvement of the thoracic duct are the commonest causes of chylothorax. Most of the earlier cases collected by Shakelford and Fisher (quoted by Goorwitch, 1955) were due to closed-chest injuries or perforating injuries from bullet or stab wounds; hyperextension injuries of the spine, especially after an automobile accident, may also result in chylothorax (Goorwitch, 1955).

Iatrogenic chylothorax has been reported from time to time after a diverse range of operations (Table III), especially involving the great vessels in the thorax. Its occurrence after intrapericardial operations is rare.

Spontaneous chylothorax due to sudden increase in intrathoracic or intra-abdominal pressure (Lampson, 1948), extrinsic compression, and intrinsic destruction (Nix et al., 1957; Bower, 1964) have also been described.

MANAGEMENT

A latent interval between the time of injury to the duct and the appearance of a chylous effusion has frequently been described (Randolph and Gross, 1957; Garamella, 1958; Tandon, 1968; Higgins and Mulder, 1971); during this period the chyle accumulates underneath the mediastinal pleura and finally breaks through to enter the pleural cavities. This usually occurs after 2–10 days but latent intervals of up to six weeks have been reported (Higgins and Mulder, 1971). The clinical picture varies with the amount of chyle lost but has certain common features, namely, an effusion, cardiorespiratory distress, appearance of chyle through intercostal drainage tubes or leakage of chyle from the wound.

The diagnosis may be established by chemical analysis of the fluid and by microscopic detection of the chylomicrons. Serial estimation of lipids, proteins, and lymphocyte count are useful in monitoring the consequences of the chyle loss.

1964). The thoracic duct is also the route by which most of the lymphocytes produced in the reticuloendothelial system are introduced into the circulation (Yoffey and Courtice, 1956).

Chyle is sterile and bacteriostatic; cultures of *Escherichia coli* and *Staphylococcus aureus* fail to multiply in pure chyle (Lampson, 1948). This bacteriostatic property is attributed to the presence of fatty acids and may account for the

![Diagram of Tributaries of thoracic duct and formation of bronchomediastinal trunks](http://example.com/diagram.png)
Extrapericardial
For Fallot’s tetralogy
Billock
Potts
Glenn
Unclassified
Ligation of PDA
Division of PDA
Repair of coarctation of aorta
Glenn’s operation
Ligation of anomalous subclavian artery
Division of vascular ring

Intrapericardial
Brock valvotomy
Closure of VSD
Repair of VSD and partial anomalous venous return
Repair of pulmonary atresia

VSD, PDA

Cardiovascular operations unclassified
22
Pulmonary operations
Apicolyis and thoracoplasty
1
Pulmonary resection for malignancy
12
Resection for pulmonary TB
1
Lysis of pulmonary adhesions
1
Oesophageal operations
Oesophageal resection
7
Repair of hiatus hernia
1
Thoracic and thoracolumbar sympathectomy
12
Costovertebral surgery
1
Radical neck surgery
5

TABLE III
IATROGENIC CHYLOTHORAX FOLLOWING DIVERSE SURGICAL PROCEDURES (FROM LITERATURE)

Treatment consists of (1) the establishment of effective drainage of the pleural cavity with re-expansion of the lung; (2) the replacement of fats, proteins, and fluid lost; and (3) surgical repair of the leak in a majority of cases.

In a number of cases, simple drainage of the pleural space with consequent re-expansion of the lung will be followed by spontaneous closure of the leak (Decançq, 1965; Chavez and Conn, 1966). Maloney and Spencer (1956) treated 11 patients by multiple aspirations and two patients subsequently required ligation of the duct.

Parenteral supplementation of lipids and proteins may be necessary (Tandon, 1968). Restriction of fats in the diet diminishes the flow of chyle and helps in early closure of the defect. Diet containing medium-chain triglycerides (less than 12 carbon atoms) may be a valuable adjunct in the clinical management of chylous fistula since they are absorbed directly into the blood stream and do not enter the thoracic duct system (Hashim et al., 1956). In practice, pooling of dye, staining of the surrounding tissues and oblitative adhesions make precise localization of the site of leak difficult.

Having localized the defect, the duct should be ligated on either side of the defect. In the presence of multiple leaks, when the tissues are soaked with chyle, it is usually sufficient to suture the mediastinal pleura at the site of the leak (Ross, 1961). Where duct injury is detected during the course of an intrathoracic operation, ligation of the duct just above the diaphragm has been recommended (Glenn, 1969).

We are grateful to Professor G. J. Romanes, University of Edinburgh, for help and advice on the anatomical aspects. We thank Miss Black and Miss Hutton for secretarial help.

REFERENCES

in 2,500 operations, with a survey of the world literature. *Journal of Thoracic and Cardiovascular Surgery*, 69, 966.

Requests for reprints to: W. H. Bain, FRCS, University Department of Cardio-Thoracic Surgery, Royal Infirmary, Glasgow G4.
Chylothorax: report of a case complicating ductus ligation through a median sternotomy, and review.
T K Kaul, W H Bain, M A Turner and K M Taylor

Thorax 1976 31: 610-616
doi: 10.1136/thx.31.5.610

Updated information and services can be found at:
http://thorax.bmj.com/content/31/5/610

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/