Successful repair of a penetrating wound of the thoracic aorta

T. Ramanathan, K. Somasundaram, and N. K. Yong

Department of Surgery, University of Malaya, Kuala Lumpur, Malaysia

Successful repair of a penetrating injury of the thoracic aorta is rare because of the massive blood loss and the inability to cross clamp the aorta safely and totally. From 1922 (Dshanelidze, 1926) to 1973, 44 successfully treated cases have been reported. This paper reports another, reviews the literature, and discusses some problems of management associated with such injuries raised by previous reports.

CASE REPORT

A 23-year-old Malay man was stabbed in the right upper chest on 29 January 1974. He was admitted to hospital within half an hour of the trauma.

Examination revealed the patient to be centrally cyanosed, restless, and sweaty. The pulse rate was 150/min and the blood pressure was 40 mmHg systolic. Both carotids and radials were palpable. The heart was in sinus rhythm but the heart sounds were distant. Auscultation of the chest revealed markedly diminished air entry over the right chest which was dull to percussion. A 1.75 cm stab wound was found in the second right interspace 50 cm to the right of the sternal edge.

A provisional diagnosis of right haemothorax was made. A supine chest radiograph showed opacification of the right lung field and some widening of the superior mediastinum (Figure).

An immediate right anterolateral thoracotomy revealed one litre of blood in the pleural cavity, laceration of the superior mediastinal pleura, and the pericardial cavity tense with blood. On opening the pericardium the intrapericardial portion of the ascending aorta was seen to be lacerated on its anterolateral aspect. Haemostasis was achieved by a side clamp and the blood pressure was restored to a normal level. The laceration was sutured with a double row of over and over atraumatic 0000 silk sutures.

The postoperative course was uneventful and the patient was discharged two weeks after operation perfectly well.

DISCUSSION

Our review of the literature revealed 44 patients successfully treated for penetrating wounds of the thoracic aorta. Detailed information is available in 24 of these cases (Table). In another 32 cases, injury to the aorta was associated with a fistula between the aorta and cardiac chambers, aorta and pulmonary arteries or aorta and systemic veins.

Parmley, Mattingly, and Manion (1958), in 456 necropsies for penetrating wounds of the heart and aorta, found that 12% of patients survived more than one hour. The few patients who reached hospital alive were either transported rapidly before exsanguination or survived because bleeding from small wounds had ceased.

Patients with penetrating injury of the aorta arriving in hospital alive are usually in severe shock. Their immediate management is by rapid transfusion with O negative blood and the maintenance of an adequate airway. Large amounts of O negative and type specific blood must be available at short notice. Resuscitation must be prompt and effective. The availability of large amounts of blood and experience in resuscitating severely shocked patients partly accounted for the high salvage rate in Vietnam casualties (Billy, Amato, and Rich, 1971).
Successful repair of a penetrating wound of the thoracic aorta

The diagnosis of penetrating wounds of the aorta is suspected by the trajectory of the missile or the direction of entry of the stabbing instrument or when bleeding is massive or continuous. The diagnosis is confirmed at thoracotomy.

Injury to the intrapericardial portion of the aorta usually results in tamponade, which may be relieved by pericardiocentesis. Associated haemothorax with or without pneumothorax necessitates the evacuation of blood and air from the pleural space. If sufficient blood is not available immediately, autotransfusion presents a possible solution to the problem of massive blood loss (Symbas and Sehdeva, 1970). Bleeding into the pericardium is sometimes compatible with survival (Diveley, Daniel, and Scott, 1961) as in our patient.

If bleeding is massive, thoracotomy is rapidly performed and haemostasis is achieved by digital compression. When bleeding is not massive or if the laceration is temporarily sealed by clot an aortogram can be performed. The patient must have large-bore polythene cannulae in the veins with facilities for rapid transfusion and transport to theatre for emergency thoracotomy should the patient collapse after the aortogram (Conn et al., 1971).

A stab wound of the side of the aorta can usually be repaired after partial tangential occlusion of the aorta. Through and through stab or bullet wounds frequently require proximal and distal cross-clamping of the aorta. Cross-clamping of the descending thoracic aorta is said to be safe if it lasts less than 20–30 minutes (Eiseman and Summers, 1955; Adams and van Geertruyden, 1956) but paraplegia has occurred after shorter periods of cross-clamping of the aorta (Symbas and Sehdeva, 1970). If the aorta has to be cross-clamped, the use of a local bypass may afford protection to the spinal cord. The technique of cardiopulmonary bypass requires total body heparinization. Systemic heparinization may result in uncontrollable mediastinal haemorrhage after an otherwise successful operative repair and adequate neutralization of heparin (DeMeester, Cameron, and Gott, 1973). Alternatively, through and through laceration of the ascending aorta

FIGURE Preoperative chest radiograph showing widening of mediastinum and opacification of the right hemithorax.
can be repaired under hypothermia and inflow occlusion. The ascending aorta is opened and the laceration of the posterior wall sutured. The aortotomy is then controlled by a side clamp and the cavae are released (Diveley et al., 1961). DeMeester et al. (1973) used a heparinized polyvinyl shunt between the ascending aorta and the left femoral artery in the operative treatment of a through and through gunshot wound of the arch of the aorta with avulsion of the origin of the left common carotid artery. Kirsh et al. (1970) used a non-heparinized shunt in patients with acute traumatic rupture of the aorta. They state that total heparinization is not needed and clotting does not occur in the shunt once flow has started in it. The use of heparinized shunts is probably safer in very sick patients with low blood pressure and an increased risk of cardiac arrest during surgery.

REFERENCES


---

<table>
<thead>
<tr>
<th>Authors</th>
<th>Date</th>
<th>Cause of Injury</th>
<th>Location of Aortic Injury</th>
<th>Type of Injury</th>
<th>Type of Repair</th>
<th>Interval between Injury and Definitive Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeMeester</td>
<td>1974</td>
<td>Stab wound</td>
<td>Intrapericardial aorta</td>
<td>1 cm Laceration</td>
<td>Suture</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Blalock</td>
<td>1934</td>
<td>Stab wound</td>
<td>Intrapericardial aorta</td>
<td>Ice pick injury</td>
<td>Suture</td>
<td>Soon after admission</td>
</tr>
<tr>
<td>Elkin</td>
<td>1941</td>
<td>Stab wound</td>
<td>Intrapericardial aorta</td>
<td>Ice pick injury</td>
<td>Suture</td>
<td>Not stated</td>
</tr>
<tr>
<td>Elkin</td>
<td>1944</td>
<td>Stab wound</td>
<td>Intrapericardial aorta</td>
<td>Knife wound</td>
<td>Suture</td>
<td>48 hours</td>
</tr>
<tr>
<td>Beattie and Greer</td>
<td>1952</td>
<td>Stab wound</td>
<td>Descending thoracic</td>
<td>1-5 cm Laceration</td>
<td>Suture and patch</td>
<td>Not stated</td>
</tr>
<tr>
<td>Keeley</td>
<td>1958</td>
<td>Gunshot wound</td>
<td>Descending thoracic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kleinert</td>
<td>1958</td>
<td>Gunshot wound</td>
<td>Descending thoracic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perkins and Elchos</td>
<td>1958</td>
<td>Stab wound</td>
<td>Extrapericardial ascending thoracic</td>
<td>2 cm Laceration</td>
<td>Suture</td>
<td>2 hours</td>
</tr>
<tr>
<td>Baret et al.</td>
<td>1958</td>
<td>Stab wound</td>
<td>Descending thoracic</td>
<td>1-5 cm Laceration</td>
<td>Suture</td>
<td>29 hours</td>
</tr>
<tr>
<td>McCann</td>
<td>1958</td>
<td>Stab wound</td>
<td>Extrapericardial ascending thoracic</td>
<td>1 cm Laceration</td>
<td>Suture</td>
<td>Immediately</td>
</tr>
<tr>
<td>Linberg</td>
<td>1959</td>
<td>Gunshot wound</td>
<td>Descending thoracic</td>
<td>4-5 mm diam.</td>
<td>Suture</td>
<td>2 hours</td>
</tr>
<tr>
<td>Beall</td>
<td>1960</td>
<td>Gunshot wound</td>
<td>Descending thoracic</td>
<td>Laceration</td>
<td>Suture</td>
<td>36-48 hours</td>
</tr>
<tr>
<td>Diveley et al.</td>
<td>1961</td>
<td>Missile—wire</td>
<td>Extrapericardial thoracic</td>
<td>3-4 mm Hole</td>
<td>Suture</td>
<td>Immediate</td>
</tr>
<tr>
<td>Beall et al.</td>
<td>1962</td>
<td>Stab wound</td>
<td>Intrapericardial thoracic</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Immediate</td>
</tr>
<tr>
<td>Stelzner and Horatz</td>
<td>1963</td>
<td>Gunshot wound</td>
<td>Extrapericardial thoracic</td>
<td>Small bullet</td>
<td>Suture</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Overbeck and Gruenagel</td>
<td>1968</td>
<td>Missile—metal splinter</td>
<td>Intrapericardial thoracic</td>
<td>3 mm Laceration</td>
<td>Suture</td>
<td>Not stated</td>
</tr>
<tr>
<td>Symbas and Sehdeva</td>
<td>1970</td>
<td>Stab wound</td>
<td>Descending aorta</td>
<td>Laceration</td>
<td>Suture</td>
<td>Not stated</td>
</tr>
<tr>
<td>Symbas and Sehdeva</td>
<td>1970</td>
<td>Stab wound</td>
<td>Intrapericardial thoracic</td>
<td>Laceration</td>
<td>Suture</td>
<td>Not stated</td>
</tr>
<tr>
<td>Conn et al.</td>
<td>1971</td>
<td>Gunshot wound</td>
<td>Arch of aorta—between L. common carotid and L. subclavian</td>
<td>Perforation</td>
<td>Suture</td>
<td>5-6 hours</td>
</tr>
<tr>
<td>Fromm et al.</td>
<td>1970</td>
<td>Gunshot wound</td>
<td>Descending aorta</td>
<td>Through and through perforation</td>
<td>Suture</td>
<td>Not stated</td>
</tr>
<tr>
<td>Fromm et al.</td>
<td>1970</td>
<td>Gunshot wound</td>
<td>Descending aorta</td>
<td>Through and through perforation</td>
<td>Suture</td>
<td>Minutes after admission</td>
</tr>
<tr>
<td>Fromm et al.</td>
<td>1970</td>
<td>Gunshot wound</td>
<td>Descending aorta</td>
<td>Through and through perforation</td>
<td>Suture</td>
<td>4 hours after injury</td>
</tr>
<tr>
<td>DeMeester et al.</td>
<td>1973</td>
<td>Gunshot wound</td>
<td>Aortic arch</td>
<td>Through and through and through perforation</td>
<td>Suture</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

---

T. Ramanathan, K. Somasundaram, and N. K. Yong

TABLE

PENETRATING WOUNDS OF THE THORACIC AORTA SUCCESSFULLY REPAIRED 1922-73

---

---

Downloaded from http://thorax.bmj.com/ on November 7, 2017 - Published by group.bmj.com
Successful repair of a penetrating wound of the thoracic aorta


Requests for reprints to: T. Ramanathan, F. R. C. S., Lecturer in Surgery, Department of Surgery, University of Malaya, Kuala Lumpur, Malaysia.
Successful repair of a penetrating wound of the thoracic aorta.
T Ramanathan, K Somasundaram and N K Yong

Thorax 1975 30: 348-351
doi: 10.1136/thx.30.3.348