Radiology of uncomplicated asthma

MARGARET E. HODSON, G. SIMON, and J. C. BATTEN

Brompton Hospital, London

Hodson, Margaret E., Simon, G., and Batten, J. C. (1974). Thorax, 29, 296–303. Radiology of uncomplicated asthma. In 22 of the 117 patients with asthma, over 15 years of age, the chest radiograph showed overinflation (O2 pattern) and additional vascular changes in two (O3 pattern). Neither abnormality was seen in 60 controls. Abnormal radiographs were found in 31% of patients whose asthma started before the age of 15 but in none of those in whom it started over 30 years of age. The mean age of patients with abnormal radiographs was 24-6 years, compared with 40-1 years for those with normal films. Radiographic changes bore no relation to duration of disease. In some cases the abnormality persisted; in others it was present only during the acute episode.

The appearances of the chest radiograph in children with asthma have recently been described (Simon, Connolly, Littlejohns, and McAllen, 1973). The aim of the present study is to determine the incidence of abnormal chest radiographs in patients over the age of 15 with asthma. Those with radiological shadowing of a localized nature have been excluded, e.g., pneumonia and allergic aspergillosis.

METHODS

Each patient had an FEV1 or PEFR performed on the day of the chest radiograph in this study and relevant clinical details were recorded at the same time. The severity of asthma on the day of the radiograph was expressed as:

\[
\frac{\text{PEFR or FEV1}}{\text{Predicted PEFR or FEV1}} \times 100
\]

The best of three readings was taken on each occasion.

All the chest radiographs were reported by the same observer (G.S.) who at the time was unaware whether he was reporting the films of an asthmatic or a normal control.

RADIOGRAPHIC TECHNIQUE Each patient had a standard postero-anterior film taken at 6 ft (1-8 m) during suspended inspiration. About half the patients also had a lateral view taken.

RADIOLOGICAL ANALYSIS Measurements of diaphragm level (Lennon and Simon, 1965), lung length, lung width, and heart width were recorded. For those with a lateral film the size of the retrosternal transradiant zone was also measured. The size of the hilar vessels relative to the peripheral lung vessels was recorded.

The diaphragm level was taken as the height of the top of the right dome of the diaphragm in the mid-lung field in relation to the inferior angle of the anterior ribs. Lung length was estimated by drawing a horizontal line at the level of the tubercle of the first rib. From this line a vertical line was drawn to the top of the dome of the right diaphragm in the mid-lung field. Lung width was
measured by drawing a horizontal line at the level of the right dome of the diaphragm to the internal aspect of the ribs on each side. The transverse diameter of the heart was measured as the furthest projections of the heart to the right and to the left of the mid-line added together. These measurements were performed in the manner described by Simon et al. (1972) (Fig. 1).

The size of the retrosternal transradiant area was measured as the distance from a point 3 cm below the angle of the sternum to the aorta (Simon, 1971).

The ratio of the size of the hilar vessels to that of the intrapulmonary vessels was recorded. This was a subjective comparison of the relative sizes of the vessels.

INTERPRETATION OF THE RADIOLOGICAL APPEARANCES The radiographs were classified into three groups:

(A) Normal pattern Presenting the following features:

1. diaphragm at or above the anterior rib level of 6½;
2. lung width greater than lung length;
3. heart diameter 11.5 cm or over;
4. if lateral film available, retrosternal transradiant area under 3.5 cm;
5. vessel pattern normal.

(B) O₁ pattern (Fig. 2a) Simple overinflation presenting two or more of the following abnormalities:

1. diaphragm below anterior rib level of 6½;
2. lung length the same or greater than lung width;
3. heart diameter less than 11.5 cm;
4. retrosternal transradiancy greater than 3.5 cm.

(C) O₂ pattern (Fig. 3a) Complicated overinflation similar to the O₁ pattern but, in addition, the hilar vessels are relatively large compared with the lung vessels. The change in the lung vessels is uniform (Simon et al., 1973).

FIG. 1. Normal radiograph showing method of measuring lung width, lung length, and transverse heart diameter.
FIG. 2. Woman aged 25 years. Asthma onset aged 2 years. (a) PEFR 75 l/min. O, pattern. Diaphragm at 7th rib. Heart diameter 9·5 cm. Lung length 26·5 cm. Lung width 25 cm. Hilar vessels normal. (b) PEFR 260 l/min. O, pattern remains. Diaphragm at 7th rib. Heart diameter 9·5 cm. Lung length 27 cm. Lung width 25 cm. Hilar and lung vessels normal.
Radiology of uncomplicated asthma

FIG. 3. Girl aged 18 years. Asthma onset aged 2 years. (a) PEFR 60 l/min. Shows O₂ complicated overinflation. Diaphragm below 7th rib. Heart diameter 9 cm. Lung length 26·5 cm. Lung width 26 cm. Basal artery 14 mm. Peripheral vessels relatively small. (b) PEFR 280 l/min. Normal pattern. Diaphragm at 6½ rib. Heart diameter 12·5 cm. Lung length 22·5 cm. Lung width 28 cm. Hilar and lung vessels normal.
Of the 22 abnormal films (Table I), 20 were classified as O₁, and two as O₂. Some patients had abnormal radiographs when they were in an acute episode and also when they had recovered (Fig. 2b). Seven O₁ pattern radiographs and one O₂ pattern radiograph returned to normal when the acute asthmatic attack was over (Figs. 3b and 4).

These abnormal radiographs were considered in relation to the age of the patient (Table II), age of onset of the asthma (Table III), duration of the disease (Table IV), and severity of the asthma on the day the abnormal radiograph was taken (Table V). O₁ and O₂ radiographs were considered together as the number of O₂ cases was so small.

There is no significant difference between the patients with abnormal and those with normal radiographs in respect to duration of disease (Table IV).

Table I

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>No. of Cases</th>
<th>All Normal Radiographs</th>
<th>Some Abnormal Radiographs O₁ or O₂</th>
<th>Constantly Abnormal Radiographs</th>
<th>Abnormal Radiographs only present in Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls Asthmatics</td>
<td>60/117</td>
<td>60/95</td>
<td>22 (19%)</td>
<td>14 (12%)</td>
<td>8 (7%)</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>No. of Cases</th>
<th>Normal Radiograph</th>
<th>Abnormal Radiograph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>No. of Cases</td>
<td>Normal Radiograph</td>
<td>Abnormal Radiograph</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>0–14</td>
<td>58</td>
<td>40/69</td>
<td>18/31</td>
</tr>
<tr>
<td>15–29</td>
<td>25</td>
<td>21/84</td>
<td>4/16</td>
</tr>
<tr>
<td>30+</td>
<td>34</td>
<td>34/100</td>
<td>0/0</td>
</tr>
<tr>
<td>Mean</td>
<td>22/4</td>
<td>7/4</td>
<td></td>
</tr>
</tbody>
</table>

Statistically significant: $x^2 = 9.06; 0.005 > p > 0.001$.

Table III

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>No. of Cases</th>
<th>Normal Radiograph</th>
<th>Abnormal Radiograph</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–14</td>
<td>58</td>
<td>40/69</td>
<td>18/31</td>
</tr>
<tr>
<td>15–29</td>
<td>25</td>
<td>21/84</td>
<td>4/16</td>
</tr>
<tr>
<td>30+</td>
<td>34</td>
<td>34/100</td>
<td>0/0</td>
</tr>
<tr>
<td>Mean</td>
<td>22/4</td>
<td>7/4</td>
<td></td>
</tr>
</tbody>
</table>

Statistically significant: $x^2 = 9.06; 0.005 > p > 0.001$.

Table IV

<table>
<thead>
<tr>
<th>Duration (yr)</th>
<th>No. of Cases</th>
<th>Normal Radiograph</th>
<th>Abnormal Radiograph</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–14</td>
<td>45</td>
<td>40/89</td>
<td>5/11</td>
</tr>
<tr>
<td>15–29</td>
<td>54</td>
<td>37/68</td>
<td>17/31.5</td>
</tr>
<tr>
<td>30+</td>
<td>18</td>
<td>18/100</td>
<td>0/0</td>
</tr>
<tr>
<td>Mean</td>
<td>18/2</td>
<td>19/0</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Of 44 adult asthmatics aged 15–29 years 36.5% had abnormal chest radiographs. The abnormalities appear to be related to the age of onset of asthma but not to its duration. Thirty-one per cent of adults with onset between 0 and 14 years had abnormal radiographs but we could find no abnormal radiographs among patients whose asthma began after the age of 30. As asthmatics get older they are less liable to show this abnormal radiographic appearance (see Table II and Fig. 5).

In a recent paper (Simon et al., 1973) it was shown that 27% of 218 asthmatic children had abnormal chest radiographs: 15% showed the O₁ pattern and 12% the O₂ pattern. In the present study we found 31% abnormal radiographs among adults whose asthma began before the age of 15. This resembles the incidence in children but the O₂ pattern is much less common in young adults than in children and both our O₂ radiographs were of patients with onset before 15 years.

Radiographic appearances of patients with emphysema (Reid and Millard, 1964; Simon, 1964, 1970) and primary pulmonary hypertension

(Anderson, Reid, and Simon, 1973) may be confused with the appearances we have described here in asthmatics with an early age of onset.

Radiographs of patients with severe widespread panacinar emphysema often show a low flat diaphragm, a large retrosternal transradiant area, and a narrow vertical heart together with small lung vessels in some areas and normal or large vessels in other areas. In the asthmatics with O₂ radiographs, the vascular pattern is different in that vascular changes are uniform throughout the lungs at equal distance from the hilum.

Chest radiographs of patients with primary pulmonary hypertension show a large pulmonary artery and hilar vessels while the lung vessels appear relatively small but there is no evidence of air-trapping, so the diaphragm will appear normal and the heart shadow enlarged rather than narrow and vertical.

We conclude that there are specific radiological changes present in a proportion of asthmatics. In some, these changes are present only during the acute episode, and in others they are a constant feature. These changes appear to be related to the age of onset of the asthma and are found less frequently as the patient gets older. The reason for the radiological appearances is uncertain.

We are grateful to the physicians at the Brompton Hospital who allowed us to study their patients. We should like to thank Mrs. Ruth Tall for help with the statistics, Miss Lillian Topping for secretarial assistance, and Mr. J. Collier of the Medical Records Department.

REFERENCES

Radiology of uncomplicated asthma

Requests for reprints to: Dr. G. Simon, Brompton Hospital, Fulham Road, London SW3 6HP.
Radiology of uncomplicated asthma

Margaret E. Hodson, G. Simon and J. C. Batten

Thorax 1974 29: 296-303
doi: 10.1136/thx.29.3.296

Updated information and services can be found at:
http://thorax.bmj.com/content/29/3/296

Email alerting service
These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/