
Maintenance of chest wall stability: a further report

B. T. LE ROUX and P. STEMMLER

The Thoracic Unit, Wentworth Hospital, Durban, and the Department of Surgery, University of Natal

The need to maintain stability of the chest wall with stainless steel strips in three unusual sets of circumstances is explained. That 'flail' chest is not synonymous with 'stove-in' chest is made clear.

Some of the problems which relate to the maintenance of chest wall stability were discussed in a previous paper (le Roux, 1964). In respect of restoration of rigidity of the chest wall after resection of rib and sternal tumours, acrylic resin has now been used in 58 patients. Rigidity has been effectively restored in all. In three cases, one illustrated (Fig. 1 a–c), the prosthesis has had to be removed after three months because of persistent infection in relation to it. After removal of the prosthesis in these three patients, the chest wall was stable and a further manoeuvre aimed at maintenance of stability was not necessary.

In the previous paper on this subject, mention was made of the use of stainless steel struts to support the sternum after correction of pectus excavatum (Paltia, Parkkalainen, Salamaa, and Wallgren, 1959; Adkins and Blades, 1961; Jensen, Schmidt, and Garamella, 1962). There are commercially available steel struts (Jensen et al., 1962) made of specially annealed cold rolled alloy 302 surgical stainless steel, in lengths which range from 14 to 41 cm, and 12 to 14 mm in breadth. Three unusual sets of circumstances made it necessary to use similar struts1, since techniques of maintenance of chest wall stability previously described were thought likely to prove unsatisfactory.

The purpose of this paper is to describe the three cases in which stainless steel struts were used to maintain chest wall stability.

CASE REPORTS

CASE 1 A woman of 28 years had a severe degree of pectus excavatum. In addition there was a deep depression in the left anterior chest wall, immediately below an unusually small left breast. Mobilization of the sternum, resection of deformed costal cartilage, and dicing of deformed left ribs rendered the chest wall unstable, and the manoeuvre aimed at maintenance of stability after correction of pectus excavatum usually employed (a Steinmann's pin laid across the gap created by excision of deformed cartilage, deep to the sternum, and superficial to the lateral ribs) was inappropriate because of the instability of the left lower ribs on which the pin would have needed to rest. A stainless steel strut, suitably curved, was so placed, deep to the sternum and the mobilized left chest wall, and superficial to right-sided ribs and unmoleded left ribs, posteriorly, that the desired shape of the thoracic cage was achieved, with stability. Convalescence was uneventful. An early postoperative radiograph is shown (Fig. 2). The strut was a source of pain after 16 weeks. The left posterior extremity of the strut was palpable deep to the skin, close to the long muscles of the back. Under local anaesthesia a small incision was made over the extremity of the strut which was easily and painlessly delivered, grasped in an artery forcep. The chest wall deformity remained corrected.

CASE 2 A labourer fell from the third floor of a building under construction, and landed with the left lateral chest wall straddling a baulk of timber. On admission to hospital the patient was little disturbed. Beyond an almost total left traumatic thoracoplasty he had few injuries, none more severe than bruising with abrasions. Remarkable was the absence of any evidence of paradoxical movement of the left chest wall. A radiograph made on admission (Fig. 3) shows the extent of traumatic thoracoplasty. That this patient had a 'stove-in' chest is unquestionable, as is the fact that he did not have a 'flail' chest. Surgical management was undertaken two days after injury, during which interval he had been entirely well, without evidence of embarrassment of respiration, and with normal blood gases. The purpose of the operation was to correct the thoracoplastic deformity which was judged radiographically to be of an extent which reduced by more than half the effective function of the left lung.

Through a left thoracotomy the inwardly displaced ribs, all fractured in more than one place, were disim wells into the alcoplasty, and mobilized. This manoeuvre converted the 'stove-in' chest to a 'flail' chest injury. Four stainless steel struts, so shaped that they conformed with the convexity of the left chest wall, were placed external to the ribs to which they were held by a

1 Made at short notice in the workshops at Wentworth Hospital, Durban, by Mr. S. S. Andrew
number of interrupted silk sutures. An early postoperative radiograph is shown (Fig. 4). The left chest wall was stable from the time of recovery of consciousness at the end of the operation. Convalescence was uneventful. The anterior ends of the two rostral steel struts became easily palpable subcutaneously and were a source of pain. All four struts were removed six months after operation, through small incisions in relation to the anterior ends of the struts under general anaesthesia. The struts, grasped in an artery forceps, slipped easily from their beds. The chest wall has remained stable and the patient has returned to work. A chest radiograph made after removal of the struts is shown (Fig. 5).

CASE 3 A 17-year-old boy presented with an unusually large tumour of the left chest wall (Fig. 6). At the apex of the tumour skin was invaded and a biopsy showed the lesion to be a chondrosarcoma. Through an elliptical incision, which skirted the lower border of the tumour, this was excised including most of the six related ribs. Although some skin had to be sacrificed because of tumour invasion, enough was left to cover the gap, so stretched had the skin become over the tumour. Posteriorly, ribs were excised medial to the costotransverse joint. The lung was not invaded. So large was the resultant chest wall...
wall deformity that there was not available sufficient acrylic resin to make a plate large enough to be effective. Four steel struts were appropriately curved and anchored anteriorly and posteriorly with silk sutures. Marlex mesh was anchored by interrupted silk sutures to the rib which constituted the rostral limit of the defect. The distal limit of the Marlex mesh was held taut and the steel struts were anchored to the Marlex, in series, with interrupted silk. The distal limit of the mesh was then secured to the caudal limit of the defect, and the mesh was similarly secured anteriorly and posteriorly. In effect, the defect
Maintenance of chest wall stability: a further report

FIG. 7. Case 3. Preoperative anteroposterior radiograph showing extent of rib destruction from the chondrosarcoma involving the left lateral and posterior chest wall.

FIG. 8. Case 3. An early postoperative radiograph after excision of the chondrosarcoma and replacement of the chest wall with Marlex mesh and stainless steel strips.

The unusual combination of pectus excavatum with a deep depression of the left anterolateral chest wall in case 1 prevented the use of a Steinmann’s pin to render stable the chest wall after mobilization of the sternum. In case 2, 'stove-in' chest was converted to 'flail' chest at operation to correct a severe degree of traumatic thoracoplasty. Rather than manage surgically induced 'flail' chest with intermittent positive pressure ventilation in a patient pharmacologically rendered apnoeic, it was elected to achieve stability with stainless steel struts, since a thoracotomy had already been made. The unusual size of the defect in the chest wall, necessary for complete removal of a large tumour, in case 3, demanded the use of...
an alternative technique for maintenance of chest wall stability since insufficient acrylic resin was available. Marlex is a polyethylene with a high tensile strength easily made into a monofilament from which mesh can be made. It is said to excite less foreign body reaction than, for example, Dacron, Orlon or nylon and is not rejected in the presence of infection. It is available in two forms—a fine, pliable mesh (used in the operation described) available in large sheets (10 × 14 in (25.4 × 35.6 cm) and called heavy gauge); and a coarser, more rigid mesh available in smaller sheets (6 × 6 in (15.2 × 15.2 cm) and called tracheal mesh). A sheet of Marlex stretched tautly, to cover the gap in the chest wall in this patient was judged unlikely alone to prevent paradox in early convalescence, and would have resulted in a cosmetically poor result because of the inevitable flattening of the chest. The steel struts contributed to security and restored the convexity of the chest wall.

REFERENCES
Maintenance of chest wall stability: a further report

B. T. Le Roux and P. Stemmler

Thorax 1971 26: 424-428
doi: 10.1136/thx.26.4.424

Updated information and services can be found at:
http://thorax.bmj.com/content/26/4/424

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/