Crush injuries of the chest
A follow-up study of patients treated in an artificial ventilation unit

I. A. DAVIDSON¹, W. BARGH², A. N. CRUICKSHANK³, AND W. H. DUTHIE⁴

From the Department of Anaesthetics, Royal Infirmary, Edinburgh

Fifty-four patients previously treated for a severe chest injury in an artificial ventilation unit have been followed up. An attempt has been made to determine their state of health and activity. Particular attention has been paid to their respiratory function. The significance of the findings has been discussed.

The effectiveness of the current management of crush injury of the chest is usually measured in terms of immediate survival (Avery, Mörch, and Benson, 1956; Griffiths, 1960; Reid and Baird, 1965; Lloyd, Crampton Smith, and O'Connor, 1965; Bargh, Griffiths, and Slawson, 1967), but there are no long-term reviews of patients with this injury treated by intermittent positive pressure ventilation (I.P.P.V.). A follow-up study of patients treated by this means in the Artificial Ventilation Unit (A.V.U.) in the Royal Infirmary of Edinburgh has therefore been made.

During the period April 1961 to December 1965, 86 patients suffering from a severe crush injury of the chest were treated. The injuries, management, and immediate progress of the first 64 of these patients have been described by Bargh et al. (1967). The remaining 22 were not dissimilar from this group. Table I summarizes the outcome of these 86 patients. Eleven patients died while still in the A.V.U. and one other patient died in hospital soon after leaving the Unit following a gastrectomy for haematemesis at the age of 85. Six patients are known to have died at a later date, one from the result of a further road accident, the other causes of death being myocardial infarction (two patients), status asthmaticus, bronchogenic carcinoma, and carcinoma of the colon.

The data presented here are based on the 54 surviving patients who had been treated one to six years previously and whom we were able to trace and interview. Forty-eight of these patients were male and their ages ranged from 6 to 75 years. Two patients had no evidence of rib fracture and 12 had bilateral rib fractures. Forty patients had a haemopneumothorax and 41 had paradoxical respiration. Table II details the major associated injuries.

| TABLE I
| OUTCOME OF 86 PATIENTS WITH CRUSH INJURY OF THE CHEST | No. |
|---|---|---|
| Died in A.V.U... | 11 |
| Died in hospital after leaving A.V.U... | 1 |
| Died later... | 6 |
| Traced... | 54 |
| Not seen... | 4 |
| Untraced... | 10 |
| Total... | 86 |

| TABLE II
| ASSOCIATED INJURIES IN 54 PATIENTS WITH CRUSH INJURY OF THE CHEST |
|---|---|---|
| Head injury... | 25 |
| Abdominal injury... | 12 |
| Limb fractures... | 33 |
| Pelvic fracture... | 8 |
| Spinal injury... | 8 |

All but one patient had a tracheostomy and patients were treated by I.P.P.V. for an average period of 12 days with a range of 3–35 days. Thirty-three patients had a laparotomy and one a thoracotomy. A neurosurgical procedure was carried out on three patients and an orthopaedic procedure on 26. The median duration of hospital stay was six weeks.

RESULTS

RESPIRATORY FUNCTION Respiratory assessment was made of the 54 patients by questioning, clinical

563
examination, chest radiography, spirometry, and blood gas analysis.

Patients were assigned to one of three groups according to the presence and degree of the symptoms of cough, sputum, and dyspnoea. Group I consisted of patients with no cough, sputum or undue exertional dyspnoea. Group II consisted of those patients with slight cough and/or minimal sputum, and/or dyspnoea on moderate exercise. Group III consisted of patients with frequent cough and/or moderate to copious sputum and/or dyspnoea on slight exercise. Patients were placed in these purely arbitrary groups both before and after the accident (Table III). It can be seen that of 23 patients in group I before injury, 17 deteriorated afterwards, nine entering group II and eight entering group III. Of the 25 patients originally in group II, only seven are shown to have deteriorated into group III.

Fifteen patients complained of chest pain which was skeletal rather than anginal in character. In no case was this severe, but it occasionally led to some disability, e.g., difficulty in lifting heavy weights. Eight patients were noted on clinical examination to have mild deformity of the chest wall. This usually took the form of asymmetry of the chest or flattening of the rib cage. Five patients, including three of the above, were noted to have a bony deformity on chest radiography. Thus a total of 10 patients had a deformity demonstrated either clinically or radiologically. In no patient was the chest deformity gross; certainly there was no evidence of marked traumatic thoracoplasty seen in any patient. Figure 1 shows the most severe deformity noted in the series. There was a tendency for chest pain to be related to bony deformity (Table IV), but the relationship was not statistically significant (P=0.1).

In 10 patients the clinical signs of obstructive lung

TABLE III

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>Group 1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>After</td>
<td>Group 2</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Group 3</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>25</td>
<td>6</td>
</tr>
</tbody>
</table>

For groupings see text.

TABLE IV

<table>
<thead>
<tr>
<th>Bony chest deformity</th>
<th>No bony chest deformity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bony chest deformity</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>No bony chest deformity</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>39</td>
</tr>
</tbody>
</table>

Fourfold table test (Documenta Geigy Scientific Tables, 1962) P=0.1.

FIG. 1. Chest radiograph.
disease were present; in five of these marked bronchos-
spasms was noted.

Chest radiography was carried out in 51 patients.
Five had evidence of chest wall deformity as
described above. Pleural thickening was a common
feature, being seen in 28 cases. Three patients had
the radiological signs of emphysema and four had small
areas of fibrosis or collapse. The chest radiographs of
one patient revealed what appeared to be an aneurysm of
the thoracic aorta; this appearance had also been
present in films performed after the chest injury and
there had been no increase in the size of this lesion.

Lung function tests were carried out in all but two
patients. The tests used were forced vital capacity
(F.V.C.) and forced expiratory volume in one second
(F.E.V.1). Figure 2 is a histogram of the ratio of the
actual F.V.C. to that predicted by sex, age, and height
from the data of Needham, Rogan, and McDonald
(1954). The mean ratio is 88.6%. Figure 3 is a histog-
ram of the ratio of F.E.V.1 to the actual F.V.C. The
mean ratio is 70.2%. These histograms show that in
the series as a whole a slight degree of both restric-
tive and obstructive lung disease is present. As one
would expect, those patients with clinical evidence of
emphysema are those with the greatest reduction in
F.E.V.

An attempt was made to determine whether the
degree of chest trauma influenced lung function as
measured at review. It was found that there was no
relation between the number of ribs fractured and
F.V.C. or F.E.V.1. Bilateral rib fractures did not affect
lung function more than unilateral fractures.

The mean F.V.C. in the 10 patients who had a
bony deformity of the chest at review was 82.8% of
predicted, as compared with 90.0% in the remainder.
This difference is not statistically significant (t=0.91).

Arterial blood gas analysis was performed in 35
patients and the results are summarized in Table V.

TABLE V

<table>
<thead>
<tr>
<th>Patients with Crush Injury of the Chest: Blood Gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHa</td>
</tr>
<tr>
<td>(ranges in units)</td>
</tr>
<tr>
<td>PaCO2</td>
</tr>
<tr>
<td>(ranges in Torr)</td>
</tr>
<tr>
<td>PaO21</td>
</tr>
<tr>
<td>(ranges in Torr)</td>
</tr>
</tbody>
</table>

1 PaO21 was estimated in only 33 patients.

GENERAL PHYSICAL STATUS An attempt has been
made to compare the present level of activity and
work capacity with that before the accident. Nineteen
patients considered their general status to be the same,
17 thought it less, and 18 much less. The common
causes of decrease in activity were respiratory (19),
orthopaedic (15), and neurological (6), either singly
or together. Of the 40 patients who have worked
since their accident, the delay in return to work varied
considerably and nine of these did not return to work
for more than 2 months. The most important
causes of delay were orthopaedic injury (14 patients)
and respiratory deficiency (9 patients). Respiratory
causes were divided between dyspnoea (7 patients)
and chest pain (2 patients). Neurological causes (5
patients) tended to be associated with the longest
delays.

Table VI shows the work status of the 54 patients
before and since the accident. Thirty patients, includ-
ing three unemployed, had a work status which was
unaltered by the accident. Two patients now have
more arduous employment while 11 have less. Causes of this deterioration in work status were given as respiratory (4), orthopaedic (3), neurological (1), and from causes unrelated to the injury (2). In one patient the cause was uncertain. The remaining 11 patients, all of whom worked prior to the accident, are now unemployed. Five of these were unemployed on account of a neurological deficit and two because of an orthopaedic disability. In two patients the unemployment was unconnected with their injury and in the remaining two the cause of unemployment was uncertain.

A specific inquiry was made from the patients and from their own doctors with regard to respiratory or cardiovascular disease. Since the accident three patients have suffered from acute bronchitis, one patient has had a pleurisy, and another has had pneumonia. Apart from these five episodes there was no obvious increase in acute chest infections in this series. Three patients gave a past history of pulmonary tuberculosis and none of these has had a relapse. One patient has had a myocardial infarct since the accident.

Since many patients sustained orthopaedic or neurological damage at the time of, or following, injury, it is worth summarizing the findings in these systems at review. Sixteen had residual orthopaedic lesions, including shortening of a leg following a fractured femur, stiff elbows and shoulders, and deformities of phalanges. It is noteworthy that eight of them considered that the lesion restricted their physical activity and/or work capacity.

As the result of spinal fractures, two patients are now paraplegic and a further two have minimal neurological changes in the lower limbs. Three patients had a severe neurological deficit as a result of a head injury, in one case a hemiplegia and obvious mental slowness, in another expressive dysphasia, and in the third hemianopia, nystagmus, and difficulty in balancing. A further three patients showed more minor deficits as a result of head injury. Four patients had peripheral nerve palsies. Table VII gives a composite picture of the respiratory, orthopaedic, and neurological deficits encountered in the present series. It can be seen that rather more than half the patients had either an orthopaedic or neurological deficit at review.

Patients were questioned regarding changes in their memory, mental ability, and power of concentration.

Table VII

<table>
<thead>
<tr>
<th>Respiratory Grading at Review</th>
<th>No Orthopaedic or Neurological Deficit</th>
<th>Orthopaedic and/or Minor Neurological Deficit</th>
<th>Serious Neurological Deficit</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>3</td>
<td>13</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>Group 2</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>Group 3</td>
<td>11</td>
<td>8</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>24</td>
<td>5</td>
<td>54</td>
</tr>
</tbody>
</table>

Many claimed some deterioration in these functions and, while no attempt was made to assess quantitatively these functions, it was felt that a number of these patients possibly sustained minor intellectual changes, probably from a head injury or hypoxia.

Seventeen patients in the present series had an E.C.G. performed while receiving treatment for their chest injury. Nine had a normal E.C.G. (if we include two with a sinus tachycardia), while four showed evidence of ST changes and three had a cardiac arrhythmia. One patient, with aortic stenosis and incompetence, had evidence of left ventricular hypertrophy. The eight patients who had an abnormal E.C.G. originally had this procedure repeated at review. With the exception of the patient who had changes associated with aortic valve disease, all the E.C.G.s were within normal limits. This implies that the changes seen in the original E.C.G.s were temporary and were probably due to hypoxia, pericardial irritation, or myocardial bruising.

Discussion

The aim of this investigation has been to determine the state of health and respiratory function of a group of patients following the treatment of a severe chest injury by I.P.P.V. The assessment of the first is largely subjective whilst the second is capable of objective measurement. Many patients received multiple injuries of which the chest formed only a part, albeit an important and life-threatening one. These patients were selected by the severity of the injury requiring their admission to an artificial ventilation unit.

Despite the severity of the original chest injuries the respiratory sequelae noted in this series have not been gross. Only one in five patients had evidence of chest wall deformity and in none was this severe, a tribute presumably to the efficiency of I.P.P.V. in preventing paradoxical chest movement. Although chest radiography frequently demonstrated localized areas of pleural thickening there was no case of fibrothorax; this can be explained by the careful search for haemothorax and its prompt drainage. The mean values for F.V.C. and F.E.V, showed surprisingly small reductions for the group as a whole, although individual patients had larger reductions. However, it must again be pointed out that there was a strong impression that many patients were affected by respiratory symptoms (cough, sputum production, and dyspnoea) to a degree not indicated by the objective tests.

Comparison of work capacities and activity level requires assessment, but it is satisfying that more than half the patients were still in the same job and that one-third considered their level of activity to be unchanged. A few patients were
Crush injuries of the chest

severely incapacitated, in keeping with the multiplicity of injuries. The most important cause of marked disability was a neurological lesion such as paraplegia or severe brain damage. Respiratory disability, although a cause of deterioration, did not often lead to total incapacity.

If morbidity is to be kept as low as possible it is essential to treat, promptly and efficiently, not only the chest injury but also any associated injuries or physiological derangement.

We wish to acknowledge gratefully the help given by Dr. J. G. Duncan, who studied and reported all the chest radiographs performed in this series.

REFERENCES

Crush injuries of the chest: A follow-up study of patients treated in an artificial ventilation unit

I. A. Davidson, W. Bargh, A. N. Cruickshank and W. H. Duthie

Thorax 1969 24: 563-567
doi: 10.1136/thx.24.5.563

Updated information and services can be found at:
http://thorax.bmj.com/content/24/5/563

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/