Article Text

Original article
Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: a case-control study
Free
  1. Stephen J Fowler1,2,
  2. Maria Basanta-Sanchez1,
  3. Yun Xu3,
  4. Royston Goodacre3,
  5. Paul M Dark1,4
  1. 1Manchester Academic Health Science Centre, and NIHR Respiratory and Allergy Clinical Research Facility, University of Manchester, University Hospital of South Manchester, Manchester, UK
  2. 2Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
  3. 3School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
  4. 4Salford Royal Hospitals NHS Foundation Trust, Salford, UK
  1. Correspondence to Dr Stephen J Fowler, Education and Research Centre, University Hospital of South Manchester, Southmoor Road, Manchester M23 9LT, UK; stephen.fowler{at}manchester.ac.uk

Abstract

Background Healthcare associated infections, including ventilator associated pneumonia, are difficult to diagnose and treat, and are associated with significant morbidity, mortality and cost. We aimed to demonstrate proof of concept that breath volatile profiles were associated with the presence of clinically relevant pathogens in the lower respiratory tract.

Methods Patients with sterile brain injury requiring intubation and ventilation on the intensive care unit were eligible for inclusion. Serial clinical and breath data were obtained three times a week, from admission up to a maximum of 10 days. Bronchial lavage for semiquantitative culture was collected immediately prior to breath sampling. Breath samples were collected in triplicate for off-line analysis by thermal-desorption/gas chromatography/time-of-flight mass spectrometry. Breath data were recorded as retention time/mass ion pairs, and analysed (pathogen present vs absent) by ANOVA-mean centre principal component analysis.

Results Samples were collected from 46 patients (mean (SD) age 49 (19) years; 27 male). The dominant factors affecting breath sample analysis were the individual breath profile and duration of intubation. When these were taken into account, clear separation was seen between breath profiles at each time point by the presence/absence of pathogens. Loadings plots identified consistent metabolite peaks contributing to this separation at each time point.

Conclusions Breath volatile analysis is able to classify breath profiles of patients with and without significant pathogen load in the lower respiratory tract. If validated in independent cohorts, these findings could lead to development of rapid non-invasive point-of-care surveillance systems and diagnostics for lower respiratory tract infection in the intensive care unit.

  • Bacterial Infection
  • Exhaled Airway Markers
  • Pneumonia
  • Respiratory Infection

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

    Files in this Data Supplement:

Linked Articles

  • Airwaves
    Andrew Bush Ian Pavord