Article Text

Original article
Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis
  1. R W Atkinson1,
  2. S Kang1,
  3. H R Anderson1,2,
  4. I C Mills3,
  5. H A Walton2,4
  1. 1Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK
  2. 2MRC-PHE Centre for Environment and Health, King's College London, London, UK
  3. 3Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire, UK
  4. 4NIHR Biomedical Research Centre at Guy's and St Thomas’ NHS Foundation Trust and King's College London, London, UK
  1. Correspondence to Dr R W Atkinson, Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; atkinson{at}sgul.ac.uk

Abstract

Background Short-term exposure to outdoor fine particulate matter (particles with a median aerodynamic diameter <2.5 μm (PM2.5)) air pollution has been associated with adverse health effects. Existing literature reviews have been limited in size and scope.

Methods We conducted a comprehensive, systematic review and meta-analysis of 110 peer-reviewed time series studies indexed in medical databases to May 2011 to assess the evidence for associations between PM2.5 and daily mortality and hospital admissions for a range of diseases and ages. We stratified our analyses by geographical region to determine the consistency of the evidence worldwide and investigated small study bias.

Results Based upon 23 estimates for all-cause mortality, a 10 µg/m3 increment in PM2.5 was associated with a 1.04% (95% CI 0.52% to 1.56%) increase in the risk of death. Worldwide, there was substantial regional variation (0.25% to 2.08%). Associations for respiratory causes of death were larger than for cardiovascular causes, 1.51% (1.01% to 2.01%) vs 0.84% (0.41% to 1.28%). Positive associations with mortality for most other causes of death and for cardiovascular and respiratory hospital admissions were also observed. We found evidence for small study bias in single-city mortality studies and in multicity studies of cardiovascular disease.

Conclusions The consistency of the evidence for adverse health effects of short-term exposure to PM2.5 across a range of important health outcomes and diseases supports policy measures to control PM2.5 concentrations. However, reasons for heterogeneity in effect estimates in different regions of the world require further investigation. Small study bias should also be considered in assessing and quantifying health risks from PM2.5.

  • COPD epidemiology
  • Asthma Epidemiology

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

    Files in this Data Supplement: