Article Text

other Versions

PDF

Original article
Role of aberrant WNT signalling in the airway epithelial response to cigarette smoke in chronic obstructive pulmonary disease

Abstract

Background WNT signalling is activated during lung tissue damage and inflammation. We investigated whether lung epithelial expression of WNT ligands, receptors (frizzled; FZD) or target genes is dysregulated on cigarette smoking and/or in chronic obstructive pulmonary disease (COPD).

Methods We studied this in human lung epithelial cell lines and primary bronchial epithelial cells (PBEC) from COPD patients and control (non-)smokers, at baseline and on cigarette smoke extract (CSE) exposure.

Results CSE significantly decreased WNT-4, WNT-10B and FZD2 and increased WNT-5B mRNA expression in 16HBE, but did not affect WNT-4 protein. The mRNA expression of WNT-4, but not other WNT ligands, was lower in PBEC from smokers than non-smokers and downregulated by CSE in PBEC from all groups, yet higher in PBEC from COPD patients than control smokers. Moreover, PBEC from COPD patients displayed higher WNT-4 protein expression than both smokers and non-smokers. Exogenously added WNT-4 significantly increased CXCL8/IL-8, IL-6, CCL5/RANTES, CCL2/MCP-1 and vascular endothelial growth factor (VEGF) secretion in 16HBE, but did not affect the canonical WNT target genes MMP-2, MMP-9, fibronectin, β-catenin, Dickkopf and axin-2, and induced activation of the non-canonical signalling molecule p38. Moreover, WNT-4 potentiated the CSE-induced upregulation of IL-8 and VEGF.

Conclusions WNT-4 mRNA and protein levels are higher in PBEC from COPD patients than control (non-)smokers, while cigarette smoke downregulates airway epithelial WNT-4 mRNA, but not protein expression. As WNT-4 further increases CSE-induced pro-inflammatory cytokine release in bronchial epithelium, we propose that higher epithelial WNT-4 levels in combination with cigarette smoking may have important implications for the development of airway inflammation in COPD.

  • Airway Epithelium
  • COPD - Mechanisms
  • COPD Pathology

Statistics from Altmetric.com

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

    Files in this Data Supplement:

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Linked Articles