rss
Thorax doi:10.1136/thx.2011.159087
  • Chronic obstructive pulmonary disease

Matrix metalloproteinase-12 (MMP-12) SNP affects MMP activity, lung macrophage infiltration and protects against emphysema in COPD

  1. Simon R Johnson1
  1. 1Division of Therapeutics and Molecular Medicine, NIHR Respiratory Biomedical Research Unit, Queens Medical Centre, University of Nottingham, Nottingham, UK
  2. 2Division of Clinical Chemistry, Queen's Medical Centre, University of Nottingham, Nottingham, UK
  1. Correspondence to Simon Johnson, Division of Therapeutics and Molecular Medicine and NIHR Respiratory Biomedical Research Unit, Queens Medical Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre, Nottingham NG7 2UH, UK; simon.johnson{at}nottingham.ac.uk
  • Received 20 January 2011
  • Accepted 9 June 2011
  • Published Online First 5 July 2011

Abstract

Background Recent genetic and animal studies have implicated matrix metalloproteinase-12 (MMP-12) in the pathogenesis of chronic obstructive pulmonary disease (COPD). It has previously been shown that individuals homozygous for the A/A allele of rs652438 in MMP-12 are over-represented among patients with severe COPD (n=1517). A study was undertaken to examine the functional basis of these findings.

Methods rs652438 A and G variants were generated by site-directed mutagenesis and transfected into COS7 cells where they were expressed. Casein zymography and a specific FRET activity assay were used to compare MMP-12 activity between alleles. Cell migration was examined using a transwell assay. Patients from two COPD cohorts were genotyped for rs652438 and associated with inflammatory cell number in bronchoalveolar lavage fluid (n=10) and induced sputum (n=262); the emphysema score (n=1428) was assessed by CT scanning.

Results Mean MMP activity was 2.95-fold higher by zymography (p=0.0049) and 3.45-fold higher by FRET assay (p=0.0001) for the A allele than the G allele. Mean migration of COS7 cells expressing the A allele was 2.31-fold greater than for those expressing the G allele (p=0.0001). Macrophage numbers were greater in bronchoalveolar lavage fluid (1.28-fold increase, p=0.033) and induced sputum (1.58-fold increase, p=0.083) of A/A individuals compared with A/G heterozygotes. The presence of the A allele was dose-dependently associated with increased emphysema (p=0.016).

Conclusions The rs652438 SNP alters MMP-12 activity with the A allele being more active, which is associated with increased macrophage infiltration and emphysema in the lungs of patients with COPD. These findings further implicate MMP-12 and this SNP in COPD.

Footnotes

  • NK and SRJ are joint senior authors.

  • Funding This study is funded by a Medical Research Council Capacity Building Studentship.

  • Competing interests None.

  • Ethics approval This study was conducted with the approval of the Nottingham Research Ethics Committee and all patients gave informed consent. Investigations into ECLIPSE resource were approved by the ECLIPSE steering committee. Informed consent and collection of the cohort was as described by Vestbo et al.11

  • Provenance and peer review Not commissioned; externally peer reviewed.


Free sample
This recent issue is free to all users to allow everyone the opportunity to see the full scope and typical content of Thorax.
View free sample issue >>

Don't forget to sign up for content alerts so you keep up to date with all the articles as they are published.

Navigate This Article