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The dynamics of the pulmonary microbiome during
mechanical ventilation in the intensive care unit and
the association with occurrence of pneumonia
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Marcus J Schultz,1 Peter J Sterk,8 Antonio Artigas,7 Lieuwe D J Bos1,8

ABSTRACT
Rationale Ventilator-associated pneumonia (VAP) is
the most common nosocomial infections in patients
admitted to the ICU. The adapted island model predicts
several changes in the respiratory microbiome during
intubation and mechanical ventilation.
Objectives We hypothesised that mechanical
ventilation and antibiotic administration decrease the
diversity of the respiratory microbiome and that these
changes are more profound in patients who develop
VAP.
Methods Intubated and mechanically ventilated ICU-
patients were included. Tracheal aspirates were obtained
three times a week. 16S rRNA gene sequencing with the
Roche 454 platform was used to measure the
composition of the respiratory microbiome. Associations
were tested with linear mixed model analysis and
principal coordinate analysis.
Measurements and main results 111 tracheal
aspirates were obtained from 35 patients; 11 had VAP,
18 did not have VAP. Six additional patients developed
pneumonia within the first 48 hours after intubation.
Duration of mechanical ventilation was associated with a
decrease in α diversity (Shannon index; fixed-effect
regression coefficient (β): −0.03 (95% CI −0.05 to
−0.005)), but the administration of antibiotic therapy
was not (fixed-effect β: 0.06; 95% CI −0.17 to 0.30).
There was a significant difference in change of β
diversity between patients who developed VAP and
control patients for Bray-Curtis distances (p=0.03) and
for Manhattan distances (p=0.04). Burkholderia,
Bacillales and, to a lesser extent, Pseudomonadales
positively correlated with the change in β diversity.
Conclusion Mechanical ventilation, but not antibiotic
administration, was associated with changes in the
respiratory microbiome. Dysbiosis of microbial
communities in the respiratory tract was most profound
in patients who developed VAP.

INTRODUCTION
Ventilator-associated pneumonia (VAP) is a frequent
complication of mechanical ventilation1 and
has a considerable morbidity and mortality.2

Microaspiration from oropharyngeal microbes
seems to play a role in the aetiology of VAP.3 This
claim is supported empirically by the effectiveness
of topical antibiotics, aimed to prevent pneumonia

through prevention of oral colonisation.4 Notably,
the respiratory tract of many intubated and mech-
anically ventilated patients gets colonised with
microorganisms without development of VAP.5

During the past 10 years the paradigm of a
‘healthy lung is a sterile lung’ was challenged.6–10

The healthy lung appeared to be populated by mul-
tiple resident bacterial species, that migrate to the
distal airways from the oral cavity.7 According to the
adapted island model the respiratory microbiome
represents a dynamic community, where the equilib-
rium point is achieved by the balance between immi-
gration and elimination mechanisms.11

Mechanical ventilation is assumed to imbalance
this equilibrium due to several factors. On one
hand, disabled cough reflex, impaired mucociliary
clearance and presence of endotracheal tube (ETT)
decrease the bacterial extinction from lower
airways. Potential pathogens may cause pneumonia
once a certain bacterial load is achieved as a result
of the right growth conditions due to an altered
lung physiology (decreased pH, presence of
sputum).12

Key messages

What is the key question?
▸ Do mechanical ventilation; antibiotic exposure

and the development of ventilator-associated
pneumonia influence the composition of the
respiratory microbiome?

What is the bottom line?
▸ Duration of mechanical ventilation was

associated, but exposure to antibiotic therapy
was not associated with dysbiosis of the
respiratory microbiome and this was related to
the development of ventilator-associated
pneumonia.

Why read on?
▸ The respiratory microbiome may play an

important role in the development of lung
disease. This study is the first to describe the
dynamics of the composition of the microbial
communities during mechanical ventilation.
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The above-described ecological perspective predicts several
changes in the lung microbiome during mechanical ventilation.
In this study, we aimed to test the validity of these predictions.
Our primary hypothesis (1) was that bacterial diversity lowers
with continued endotracheal intubation and mechanical ventila-
tion, and as antibiotics are administrated. Our secondary
hypotheses were that (2) duration of mechanical ventilation is
associated with dysbiosis of the microbiome and (3) that these
changes are more profound in patients who develop VAP. We
also postulated that (4) bacteria that are relatively independent
from the rest of the microbiome in a co-occurrence network are
the ones that are recognised as potential pathogenic microorgan-
isms, as has been shown for cystic fibrosis previously.13

METHODS
Design and setting
This is a post hoc analysis of tracheal aspirates of patients who
were originally included in an international multicentre pro-
spective observational cohort study of the predictive value of
biological markers for development of VAP.14 The study proto-
col was reviewed and approved by the Medical Ethical
Committee of Parc Tauli, Sabadell, Spain (IRB: 2008/524).
Written informed consent was obtained from all patients or
their legally authorised surrogates in accordance with local
requirements.

Inclusion and exclusion criteria
We recruited patients on invasive mechanical ventilation for a
non-infectious cause of respiratory failure between September
2008 and September 2010, without evidence of pneumonia on
the chest radiograph at admission to the ICU (ie, absence of
new or persistent consolidations). Patients were not receiving
antimicrobial therapy within the 5 days preceding ICU admis-
sion, even though prophylactic antimicrobial therapy (long-term
therapy for the immunocompromised host) was allowed.
Patients were expected to require mechanical ventilation for
more than 48 hours. Exclusion criteria were age less than
18 years, pregnancy or lactation, fulminant hepatic failure, pan-
creatitis and disseminated cancer. Patients expected to die or
undergo withdrawal of treatment within 72 hours after enrol-
ment were also excluded. We also excluded patients of whom
sufficient clinical data or microbiological data were lacking and
if less than two airway samples of sufficient quality were avail-
able or if they were ventilated for less than 7 days.

Diagnostic definitions and patient selection
Patients were classified into four groups (table 1). VAP was diag-
nosed using consensus criteria;15 a new and persistent radiographic
infiltrate plus at least two of the following criteria: (a) temperature
>38°C or <36°C; (b) leucocytes >10 or <4×103/mm3; (c) puru-
lent tracheal aspirate16 but always needed quantitative microbio-
logical confirmation to fulfil the diagnosis of ‘VAP’ (>103 or >106

colony forming units (CFU)/mL in bronchoalveolar lavage (BAL)
fluid or endotracheal aspirate (ETA), respectively. Patients who met
these clinical and microbiological criteria, but were intubated and
mechanically ventilated for less than 48 hours were classified as
having hospital-acquired pneumonia or community-acquired pneu-
monia (H/CAP; these patients were not excluded because they did
fulfil the criteria for pneumonia at admission). Patients not fulfilling
the abovementioned criteria for VAP but of whom microbiological
culture revealed presence of bacteria in BAL or ETAwere classified
as ‘colonised patients without VAP’. Patients not fulfilling the
abovementioned criteria for VAP with negative cultures were classi-
fied as ‘non-colonised patients without VAP’.

Data and sample collection
Patient demographics, primary (and admission) diagnosis,
Simplified Acute Physiology Score II,17 Acute Physiology and
Chronic Health Evaluation II score18 and ICU mortality were
recorded for all patients. Administrated antibiotics were
recorded daily. ETA samples were collected at ICU admission
and subsequently twice a week (Mondays–Thursdays or
Tuesdays–Fridays). Bronchoscopic BAL was performed on the
day of clinical suspicion of VAP. Isolates were characterised by
colony morphology and Gram stains. The remaining portions of
ETA samples were stored at −80°C.

DNA extraction and amplicon library preparation
Total DNA was extracted from 127 ETA samples using the
PowerSoil DNA Isolation kit (Cat. No. 12888-100, MoBio,
USA) following the user manual guide. Details on DNA extrac-
tion and amplicon library preparation are given in the online
supplement.

454-sequencing of bacterial community 16S rRNA gene
Emulsion PCR was performed according to the protocol
(emPCR Method Manual—Lib-A SV January 2010) supplied
with the GS FLX Titanium XLR 70 Sequencing kit (Roche,
Branford, Connecticut, USA) and processed for sequencing on a
454 GS FLX+ (454 Life Science, Branford, Connecticut, USA)
according to manufacturer’s instructions (V.02), as published
previously.19 Data analysis were performed using the software
‘Quantitative Insights into Microbial Ecology’ (QIIME) V.1.9.20

Reads were removed if they were <200 and >500 nucleotides
(nt) in length, if there were mismatches in the barcodes or
primers, if ambiguous nucleotides were present or if the read
quality score was <25. Chimeric sequences were filtered out
using ChimeraSlayer.21 Then we clustered the sequences into
operational taxonomical units (OTU’s) based on 97% sequence
similarity (Uclust). The resulting OTU table was then condensed
by removing all OTUs representing less than 0.005% of the
total number of sequences. Rarefaction was done by random
subsampling with 2315 reads as threshold. More details can be
found in the online supplement. Data were processed with
default settings except when stated otherwise. All sequences
were submitted to the European Nucleotide Archive under the
study submission number PRJEB13056 (required clinical data as
supplemental file).

Data analysis
Statistical analysis was performed in R (V.3.2.3) via the R-studio
interface and topological analysis was performed in Cytoscape
(V.3.3.0).22 The relative abundance table ranked by order and a
correlation matrix for the abundances of the selected taxonomic
orders were imported into R and used for the downstream ana-
lysis. A p value of less than 0.05 was considered significant.

α diversity was expressed as the Shannon index for normal-
ised numbers of sequences for each sample. β diversity was
given as weighted UniFrac distances and summarised using prin-
cipal coordinate (PCo) analysis of Bray-Curtis and Manhattan
distances, as these three combined represent most features of β
diversity.23 Antibiotic exposure and the composition of the
respiratory microbiome was visualised per day, per patient.
Antibiotics exposure was dichotomised; a patient did or did not
receive antibiotics on the day of sampling. The sample size was
deemed too small for more indepth analysis of the influence of
antibiotics.
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Table 1 Patient characteristics

Patients without VAP with non–
colonised airways (n=9)

Patients without VAP with
colonised airways (n=9)

Patients with VAP
(n=11)

Patients with HAP or
CAP (n=6) p Value

Age, years 71 (64–75) 60 (41–76) 53 (38–62) 73 (66.2–77) 0.13
Male, N(%) 5 (55.6) 3 (33.3) 5 (45.5) 4 (66.7) 0.70
APACHE II 23 (19–26) 20 (13–31) 24 (17–30) 26 (24–34) 0.60
SAPS II 51 (45–61) 65 (37–69) 56 (43–72) 44 (20–66) 0.64
Day of event (pneumonia/
colonisation)

4 (2–4) 8 (5–16) 1 (0–1) <0.001

First day of antibiotic therapy 1 (0–1) 1 (0–1) 1 (1–2) 1 (0–5) 0.75
Reason for MV
Resp. failure 1 (11.1) 1 (11.1) 2 (18.2) 2 (33.3) 0.82

Shock 2 (22.2) 2 (22.2) 2 (18.2) 0 (0)
Coma 5 (55.6) 6 (66.7) 7 (63.3) 3 (50)
Other 1 (11.1) 0 (0) 0 (0) 1 (16.7)
Culture result
Acinetobacter baumannii 0 (0) 2 (18.2) 0 (0)
Candida albicans 4 (44.4) 0 (0) 0 (0)
Escherichia coli 0 (0) 1 (9.1) 1 (16.7)
Enterobacteriaceae 1 (11.1) 0 (0) 0 (0)
Gram negative rods, not
further specified

0 (0) 1 (9.1) 0 (0)

Haemophilus influenzae 0 (0) 4 (36.4) 2 (33.4)
Klebsiella pneumoniae 0 (0) 0 (0) 1 (16.7)
Moraxella catarrhalis 1 (11.1) 0 (0) 0 (0)
Neisseria meningitidis 1 (11.1) 0 (0) 0 (0)
Pseudomonos aeruginosa 0 (0) 0 (0) 1 (16.7)
Staphylococcus aureus 2 (22.2) 3 (27.3) 3 (50)
Streptococcus pneumoniae 0 (0) 0 (0) 1 (16.7)

ICU length of stay 15 (8–19) 12 (10–19) 21 (17–31) 11 (6–15) 0.05
28 days mortality 2 (22.2) 1 (11.1) 3 (27.3) 3 (50) 0.50

Continuous variables are shown as median with inter quartile range, categorical variables as number with percentages. p Values are generated by Kruskal-Wallis test for continuous
variables and by Fisher’s exact test for categorical variables.
The first day of antibiotic therapy is given in this table; more details on what antibiotics were used in the groups can be found in the online supplement.
APACHE, Acute Physiology and Chronic Health Evaluation; CAP, community-acquired pneumonia; HAP, hospital-acquired pneumonia; MV, mechanical ventilation; SAPS, Simplified Acute
Physiology Score; VAP, ventilator-associated pneumonia.

Figure 1 Control patients were only
included if they were intubated and
mechanically ventilated for 7 or more
days. Patients with less than two
airway samples with DNA of sufficient
quality were excluded. H/CAP, hospital
or community-acquired pneumonia
(admitted without pneumonia but
developed pneumonia in the first
2 days of mechanical ventilation, thus
not fulfilling the criteria for VAP); VAP,
ventilator-associated pneumonia.
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All sequenced samples were used to study the influence of
duration of mechanical ventilation and the administration of
antibiotics in a linear mixed effect model. The fixed-effect inde-
pendent variables were the total number of days of mechanical
ventilation at the moment of sampling and if a patient received
antibiotics or not at the day the sample was taken. α diversity
was used as dependent variable. A per-patient random intercept
was used, which takes differences between patients at the start
of mechanical ventilation into account.

In order to see if the pulmonary microbial composition was
different between patients who did and did not develop pneu-
monia or were colonised, two clinically relevant time points
were selected per patient. The first was the sample taken directly
after the start of mechanical ventilation. The second was the last
sample taken before extubation, or the first sample taken after
VAP diagnosis in those patients who went on to develop VAP.
This did not lead to a match in duration of mechanical ventila-
tion for the second sample between patients who did and did
not develop VAP (5 vs 10 days, p<0.02). Changes between
these time points were calculated for the variables of interest
(indices of α and β diversity described above) per patient and a
Mann-Whitney U test or a logistic regression model (for multi-
variate analyses such as PCo) was used to test statistical signifi-
cant differences between patients who did and did not develop
VAP.

To get an insight into the community structure and analyse
the interactions between different members we performed the
topological analysis by computing a microbial network, calculat-
ing Pearson’s and Spearman’s correlation coefficients, and apply-
ing Markov cluster algorithm.

PCo analysis using biodiversity indexes generated PCos.
Logistic regression was used to test differences in changes in
PCos between patients who did and did not develop VAP.
Topological analysis was performed using the CoNet plugin of
Cytoscape. All analysis parameters were set according to the
user manual that was published by Faust et al.24 The final
network was visualised with organic layout and treated as undir-
ected. Average cluster coefficient, node degree distribution,
diameter and other parameters were calculated using
NetworkAnalyzer, a built-in Cytoscape plugin. Following this
step the network was clustered by Markov cluster algorithm,
which is a part of clusterMaker plugin.

RESULTS
Patient description
Thirty-five patients were included in three hospitals in Spain
and Portugal (figure 1). Eleven patients (31%) were classified as
having VAP, 9 (26%) as patients without VAP but with colonised
airways and 9 (26%) as patients without VAP and without colo-
nised airways. Additionally, six patients (17%) that developed
pneumonia within the first 48 hours after intubation were
included (H/CAP). Table 1 shows the patient characteristics.
Twenty-seven patients received antibiotics at some point during
their stay in the ICU (also see online supplementary table S1
and figure S1). A total of 111 samples were sequenced. Details
on the sequencing results can be found in the online
supplement.

Dynamics in the composition of the microbiome
Online supplementary figure S2 in the online supplement shows
per patient changes in relative abundances and microbial relative
abundance. The cultured pathogen was not always found to be
highly abundant in the microbiome as measured by amplicon
sequence analysis (see online supplementary table S2).

Change in diversity during mechanical ventilation and
antibiotic therapy
The changes in diversity over time are represented in figure 2;
diversity decreased in all but six patients (83%) during mechan-
ical ventilation. Duration of mechanical ventilation was asso-
ciated with a decrease in Shannon diversity (fixed effect
regression coefficient (β): −0.03 (95% CI −0.05 to −0.005)),
but the administration of antibiotic therapy was not (fixed-effect
β: 0.06; 95% CI −0.17 to 0.30). Online supplementary
figure S1 shows the antibiotic exposure per patient.

Association of changes in microbiome with the
development of VAP
The changes in α diversity did not differ between patients who
did and did not develop VAP (figure 2). There was a statistical
difference in Weighted UniFrac distance between patients who
developed VAP and control patients without colonised airways
(figure 2; p=0.02), but not between patients who developed
VAP and patients with colonised airways (p=0.24). β-diversity
was further studied by PCo analysis of Bray-Curtis and
Manhattan distances. There was a significant difference in
change of PCo1 between patients who developed VAP and
control patients for Bray-Curtis distances (N=25; p=0.03,
respectively; see figure 3), and for PCo1 and PCo2 for
Manhattan distances (N=25; p=0.04 and p=0.03, respectively;
see also figure 4). Burkholderia and Bacillales (with
Staphylococcus aureus as most important species) and, to a
lesser extent, Pseudomonadales positively correlated with these
PCos (figures 3 and 4). The other taxonomic units were nega-
tively correlated with the indices (figures 3 and 4).

Potential pathogens tend to mutually exclude other
community members
To reveal ecological interactions within pulmonary communities
of intubated and mechanically ventilated patients the OTUs
were used as an input for topographical analysis (figure 5). The
resulting network had a diameter of 7 with an average clustering
coefficient of 0.38 and an average number of neighbours of 4.5.
Some bacterial representatives were negatively connected with
other species. Among them such confirmed VAP triggers as
Pseudomonadales (genera Acinetobacter (topological coeffi-
cient=0.22) and Pseudomonas (topological coefficient=0.27)),
Bacillales (genus Staphyloccoccus (topological coeffi-
cient=0.18)) and Burkholderiales (genus Burkholderia (topo-
logical coefficient=0.20)) demonstrated also decreased
neighbourhood connectivity. Bacteroidetes (genera Prevotella,
Porphyromonas), some Bacillales (genus Gemella) and several
other OTUs had the highest connectivity (at least 10 neigh-
bours) indicating a high prevalence and cooperative strategy.

DISCUSSION
The data presented in this study support the adapted island
model, which predicts changes in the respiratory microbiome
after intubation and start of mechanical ventilation. However,
antibiotic treatment did not lower the diversity. In line with our
hypothesis, we found a difference in the dynamics of the
respiratory microbiome between patients who did and did not
develop pneumonia during mechanical ventilation. Dysbiosis in
the respiratory tract seems to be more profound in patients who
develop VAP than in patients who do not develop pneumonia.

Duration of mechanical ventilation was found to be associated
with a decrease in α diversity of the respiratory microbiome.
These results are in line with previous findings using molecular
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microbial detection methods.25 This study differs from previous
attempts as we quantified the change in diversity per patient,
rather than on a population basis. The spectrum of detected
species and their diversity was not associated with antimicrobial
treatment, even though all patients were treated with moderate-
spectrum or broad-spectrum antibiotics at some point of mech-
anical ventilation. This result supports previous findings
obtained in intubated patients.25 Sample collection from the
trachea, very close to ETT may explain these findings and we

speculate that the measured microbiome at least partly reflects
the biofilm of microbes formed on the surface of the tube. ETTs
are known to provide a mechanical barrier between bacteria and
host circulatory system and as a consequence may limit the
access of antibiotics.26 In addition, bacteria recovered from
ETTs show increased antibiotic resistance.27 Another explan-
ation is that some classes of antibiotics impact the respiratory
microbiome, while others do not. The sample size of this study
was insufficient for the separate analysis of different types of

Figure 2 Left graph: Changes in diversity between two time points; sample just taken after initiation of mechanical ventilation and before
extubation or at the development of VAP, whatever came first. Shannon diversity is a measure of α diversity. Right graph: weighted UniFrac distance
between these two samples, represented per group. There was a statistical difference in weighted UniFrac distance between patients who developed
VAP and control patients without colonised airways (p=0.02), but not between patients who developed VAP and patients with colonised airways
(p=0.24). The trend lines per patient group are visualised in dark green for non-infected patients without colonisation, in red for non-infected
patients with colonisation and in purple for patients who developed VAP. Box plot: the box indicates medians with IQRs and the lines reach the
minimum and maximum values. VAP, ventilator-associated pneumonia.

Figure 3 The x-axis shows PCo 1
and the y-axis PCo 2 form Bray-Curtis
distances for β-diversity. The changes
per patient are visualised in as dashed
lines dark green for non-infected
patients without colonisation, in red
for non-infected patients with
colonisation and in purple for patients
who developed VAP. The grey arrows
give the relative contribution of the
taxonomic units to the PCos. The black
arrow gives the mean change for all
patients between the two time points.
Logistic regression analysis showed
that the change of PCo1 was
significantly lower in patients who
developed VAP (p=0.03; for PCo2
p=0.13). PCo, principal coordinate;
VAP, ventilator-associated pneumonia.
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antibiotics. Therefore, we cannot exclude that our conclusion is
an oversimplification and that some antibiotics indeed decrease
the diversity of the respiratory microbiome. However, we must
note that to our best knowledge this selectivity of antibiotics has
not been described before for bacteria in the lung, although it
has been for the gut.28

The results of this study imply that the dysbiosis in patients
with VAP is more profound than in patients who did not
develop pneumonia. This is in line with previous studies that
report that the respiratory microbiome is disturbed markedly
during pneumonia.29 30 We extend the finding of the limited
studies done in ICU-patients,25 31 32 as no control group was

Figure 4 The x-axis shows PCo 1
and the y-axis PCo 2 form Manhattan
distances for β-diversity. The changes
per patient are visualised in as dashed
lines dark green for non-infected
patients without colonisation, in red
for non-infected patients with
colonisation and in purple for patients
who developed VAP. The grey arrows
give the relative contribution of the
taxonomic units to the PCos. The black
arrow gives the mean change for all
patients between the two time points.
Logistic regression analysis showed
that the change of PCo1 and PCo2
were significantly higher in patients
who developed VAP (p=0.04 and
p=0.03, respectively). PCo, principal
coordinate; VAP, Ventilator-associated
pneumonia.

Figure 5 The microbial network of intubated patients consisted of 84 nodes and 184 edges. Node size is proportional to the neighbourhood
connectivity of corresponding OTUs, node colour matches to taxonomical orders. The nodes representing opportunistic pathogens are marked in red.
The edges show the associations with FDR q-values below 0.05, with directionality, and more than two supporting pieces of evidence based on
correlation and distances between samples. All edges represent significant correlation between OTUs and are coloured in grey when positive and in
red when negative. For an exact description of the definitions, see Faust et al.24 FDR, false discovery rate; OUT, operational taxonomical unit.
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included in those studies and thus it was previously unknown
what the ‘normal’ dynamics in the respiratory microbiome were
during mechanical ventilation. One excellent study that did
include a control group was performed in young and elderly
non-critically ill patients.29 They found profound differences
between non-critically ill patients with and without pneumonia.
As in our studies, they used samples obtained from the trachea.
Our results imply that dysbiosis also plays a role in the develop-
ment of VAP, but other species were involved than in study on
CAP.29 Steenhuijsen et al found an increase in Lactobacillus and
Rothia species, while these were negatively associated with the
microbiome we found in patients VAP. We identified
Burkholderia, Bacillales (with Staphylococcus aureus as most
important species) and to a lesser extend Pseudomonadales as
important players in the development of VAP. We feel that this
resembles the unique pathogenesis of VAP. Indeed, the few
patients who developed pneumonia within the first 48 hours of
mechanical ventilation, showed very different changes in the
pulmonary microbiome than the patients who developed VAP
(see online supplementary figures S5 and S6), although these
differences could not be quantified due to the small sample size.

Several strengths and weaknesses could be noted in the
present study. The most important strength was repeated sam-
pling. This provides deeper insights into the respiratory micro-
biome, since microbial communities are naturally very dynamic
and highly interactive.25 33 34 This allowed us to investigate the
effect of antibiotic use and trends in respiratory microbial com-
munity richness and composition during the mechanical ventila-
tion. However, this approach did not allow for repeated BAL
and therefore ETAs were used. The trachea may not be the ideal
location to study pneumonia, as this disease is defined by the
infection of the bronchia and alveoli. Indeed, ETA cultures have
a limited predictive value for VAP compared with BAL.35 This
might also explain that the sequencing results did not corres-
pond to the culture results, although this was observed previ-
ously in other studies that used BAL fluid as well.25 36 In the
adapted island model, the trachea is seen as the first island close
to the continent (the mouth) and every species present further
down should pass here.7 Therefore, it is the most appropriate
sample to investigate the influence of mechanical ventilation on
the respiratory microbiome. In addition, the constitution of the
microbiome in the lung was found to be relatively homogenous
in healthy volunteers.6 Another strength is that we combined
various statistical approaches and consistently took the between-
patient variation into account. Several other studies have per-
formed longitudinal analysis of the microbiome,25 37 but the
majority assumed independence between sequential samples
within the same patients. The most important weakness of this
study is the small sample size. This was especially true for the
evaluation of the effects of antibiotics on the pulmonary micro-
biome. Therefore, we do not reject the hypothesis that antibio-
tics influence the pulmonary microbiome, although we can state
that the influence is not as overwhelming as might be expected.
This is also exemplified in a recent animal study, in which treat-
ment of rats with imipenem led to little disturbance.38 Despite
the small sample size, a statistically significant effect for duration
of mechanical ventilation was found and several differences
were identified between patients who did and did not develop
pneumonia.

Pathogens that were found in patients with microbiologically
confirmed VAP (eg, Acinetobacter, Pseudomonas,
Staphylococcus) mutually excluded other representatives of the
community, as shown in the topological analysis. This implies
that respiratory pathogens should be viewed as aggressors for

the host and for the other bacterial community members.
Further research should decipher the metabolic pathways, which
are involved in the overgrowth and suppression of the rest com-
munity species. This approach together with characterisation of
the host adaptive and innate immune factors has a potential to
deliver new insights into dysbiosis of the respiratory microbiome
during mechanical ventilation. Such mediating effects have
recently been shown for Mycoplasma species that, generally,
were not considered to be pathogenic.39 Another recent study
described that the relative abundance of Bacteroidales species
positively correlated with a systematic inflammatory response,
measured by the concentration of tumour necrosis factor α in
plasma, in patients with acute respiratory distress syndrome
(ARDS).38 These two papers exemplify the importance of a
integrative approach for future studies, taking microbiome,
metabolome and inflammatory mediators into account.

CONCLUSION
The adapted island model correctly predicts loss of diversity
and increased relative abundance of well-adapted microbes
during intubation and mechanical ventilation. Dysbiosis of the
respiratory microbiome is more profound in patients who
develop VAP than in those that do not develop pneumonia. This
seems to be related positively associated with the relative abun-
dance of Burkholderia, Bacillales (with Staphylococcus aureus as
most important species) and, although less convincingly,
Pseudomonadales.
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