Responses

PDF
Visualising early lung disease in CF: the emergence of MRI
Compose Response

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests

PLEASE NOTE:

  • Responses are moderated before posting and publication is at the absolute discretion of BMJ, however they are not peer-reviewed
  • Once published, you will not have the right to remove or edit your response. Removal or editing of responses is at BMJ's absolute discretion
  • If patients could recognise themselves, or anyone else could recognise a patient from your description, please obtain the patient's written consent to publication and send them to the editorial office before submitting your response [Patient consent forms]
  • By submitting this response you are agreeing to our full [Response terms and requirements]

Vertical Tabs

Other responses

Jump to comment:

  • Published on:
    MRI is promising but not yet ready for routine use
    • Tim Rosenow, Postdoctoral Research Officer Telethon Kids Institute, University of Western Australia
    • Other Contributors:
      • Stephen M Stick, Senior Principal Researcher

    Magnetic resonance imaging (MRI) of the lung is an exciting field that is currently undergoing a period of rapid advancement. With its ability to measure lung function as well as structure, MRI stands to greatly improve our understanding of cystic fibrosis (CF) pathophysiology in children. However, there are still a number of significant hurdles to overcome if MRI is to become a tool for routine monitoring of paediatric CF lung disease.

    Compared to other commonly used modalities such as computed tomography (CT), spirometry, and multiple breath washout (MBW), MRI is considerably more expensive and, due to high demand, generally has long wait times for access. In addition, the cost of Helium for inhalation as a contrast agent is substantial, and due to diminishing reserves, access is likely to be more problematic in the future. The use of hyperpolarised gas requires expensive equipment that is not available in all centres, such as specially tuned radiofrequency coils and a gas hyperpolariser, as well as the expertise to run them [1]. The significant cost to set up and maintain such a system presents a huge barrier to entry for many CF centres, compared to the nearly universal presence of CT and lung function testing facilities.

    Standardisation of MRI between centres is challenging. Many sequences are protected under intellectual property law resulting in vendor-specific protocols, hampering comparisons between platforms [2]. Magnetic field inhomogeneity can lea...

    Show More
    Conflict of Interest:
    None declared.