MRI in assessment of lung cancer

We congratulate Fischer et al for their significant and well-written article, published in this issue of Thorax.1 The report covers important topics in the imaging of lung cancer staging. The authors report that positron emission tomography (PET)-CT improves discrimination in metastatic disease. They also demonstrated that patients with enlarged lymph nodes on CT require confirmation independent of PET findings, and that a positive PET-CT finding requires confirmation before making a decision about surgery. We would, however, like to discuss and highlight an alternative technique with benefits for lung cancer staging.

Recent advancements in MRI systems (such as improved pulse sequences, utilisation of contrast media and new techniques such as diffusion) have made MRI an increasingly important tool for lung cancer staging. Reports have indicated the ability of MRI to reveal mediastinal tumour invasion and to help identify hilar and mediastinal nodal metastases.1–4 A series of 115 consecutive non-small cell lung carcinoma patients prospectively underwent CT, MRI and 18F-fluorodeoxyglucose (FDG)-PET, as well as surgical and pathological examinations. The study reported that the quantitative sensitivity (90.1%) and accuracy (92.2%) of MRI were significantly higher than the quantitative and qualitative sensitivities (76.7% and 74.4%) and accuracies (83.5% and 82.6%) of co-registered FDG-PET/CT on a per patient basis (p<0.05).1

The cost of imaging studies is an important consideration. The nature and complexity of the imaging system and the requirement for continuous production of radiopharmaceutical products makes PET/CT intrinsically more expensive than other imaging methods. The characteristics of MRI make it a safer modality than PET/CT. Unlike the ionising radiation used in CT, the powerful magnetic field and radiofrequency energy used by MRI are not of a nature that can cause cancer or fetal abnormalities. It is important to note that although x-rays are known to cause cancer, the exact risk of developing cancer from CT scans or repeated CT examinations is unknown.5 We hope that this short comment may encourage investigators to use and study MRI as a new method that offers considerable benefits for lung cancer staging.

Bruno Hochhegger,1 Edson Marchiori,2 Klaus Itron,3 Jose Moreira,1 Glaucia Zanetti2
1Department of Radiology, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil; 2Department of Radiology, Federal University of Rio de Janeiro, Petrópolis, Brazil; 3Department of Radiology, Liverpool Heart and Chest Hospitals, Liverpool, UK

Correspondence to Bruno Hochhegger, Santa Casa de Misericórdia de Porto Alegre, Rua Julio Alfredo 558/301, Porto Alegre, Brazil; brunohochhegger@gmail.com

Competing interests None.

Patient consent Obtained.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 11 January 2011Published Online First 10 February 2011

REFERENCES

Risk disclosure prior to bronchoscopy

We read with interest the article by Uzbeck et al demonstrating increased patient anxiety upon receiving detailed information regarding complications of bronchoscopy, in addition to the letter by Echavarria et al documenting the consenting practices of 33 respiratory physicians in the north east of England. A wide variation in practice is identified. The General Medical Council guidance for doctors relating to consent3 indicates that a physician ‘must tell patients if an investigation… might result in a serious adverse outcome, even if the likelihood is very small’. An adverse outcome is defined as one ‘resulting in death, permanent or long term physical disability or disfigurement, medium or long term pain, or admission to hospital’. The guidance also indicates that less serious side-effects or complications should be communicated if they occur frequently.

In reviewing the Uzbeck paper and their local practice, Echavarria et al2 feel that the appropriate balance between the disclosure of relevant risks and patient anxiety is one in which a high risk disclosure is advisable. However, it can be argued that this balance can only be struck in the knowledge of local and even personal bronchoscopic practice and performance, and that it is unethical to advise patients of risks that are neither serious nor common.

Many hospitals now utilise computer software to record and analyse bronchoscopic findings and outcomes. These software packages frequently allow the recording of relevant complications or side-effects with free text areas for the documentation of less frequently encountered, but clinically relevant, events. In a review of 1261 fibre-optic bronchoscopies, recorded on InfoFlex5 software (CIMS, Hertfordshire, UK) at Sheffield Teaching Hospitals NHS Foundation Trust over a 24-month period (1 December 2007 to 1 December 2009) 86.5% of patients did not encounter complications of sufficient severity for a record to be created. Data were unavailable for 4.2% of patients; 9.4% had documented bleeding and 2% were noted to have undergone desaturation requiring premature termination of the procedure or considered to be clinically relevant or unexpected. This latter group included those developing pneumothorax following transbronchial biopsy. No deaths were encountered in the patient cohort despite approximately 10% of the patient group undergoing interventional bronchoscopic procedures including laser therapy or stenting.

The quality of statistical output from any database is dependent on the quality of data entry and the consistency between clinicians in identifying and recording relevant complications. For instance, two clinicians may differ in their assessment of a ‘clinically relevant’ desaturation or bleeding event, and many therefore enter different datasets for a similar clinical experience, thus confounding analysis. However, for major complications, such as intraprocedural death or large volume haemorrhage, this is less likely to occur.

Our data would suggest that, in an appropriately selected patient group, administered to by experienced medical staff with appropriate training and expertise, major risks for bronchoscopy are infrequent and rarely life-threatening. On this basis the more limited information disclosure outlined by Uzbeck et al,1 with resultant lower levels of anxiety for patients may be more appropriate.

Stephen M Bianchi, Shironjit Saha, Paul Anderson
Northern General Hospital, Sheffield, UK
Correspondence to Dr Stephen M Bianchi, Chest Clinic, Northern General Hospital, Sheffield S5 7AU, UK; stephen.bianchi@sth.rhns.uk

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 4 September 2010Published Online First 30 October 2010

REFERENCES

Thorax April 2011 Vol 66 No 4

357
Author’s response: ‘risk disclosure prior to bronchoscopy’—Bianchi et al

We are grateful to Dr Bianchi and colleagues for their interest in our study.1 They argue that ‘knowledge of local and even personal bronchoscopic practice and performance’ is necessary to determine the level of risk to the patient from the procedure and hence the degree of information that must be provided.2 This is certainly true if there is reason to believe that the risks in an institution or for an individual differ significantly from the norm—in either direction.

A database, such as that used in the Sheffield Teaching Hospitals, for recording complications following bronchoscopy is a valuable resource for auditing outcomes and quality assurance. However, one must be cautious when interpreting the absence of a serious complication in any given series. Hanley and Lippman-Hand, in a now-classic paper, described the ‘rule of three’ for such series: if none of n patients showed the event of interest, we can be 95% confident that the chance of this event is at most 3/n.3 For example, the Sheffield data showing no death with 1261 fibreoptic bronchoscopies translates into a 95% confidence limit ranging from zero to an upper limit of 1 death in 420 procedures (Clinicians may find the other implication of using CI—that occurrence of an uncommon complication is not of itself an evidence of poor performance—more comforting). The absence of an uncommon complication in a personal or an institutional series will not of itself help the clinician strike the difficult balance between providing too much and too little risk information.

Shaun T O’Keeffe, Mateen Uzeck, Colin Quinn
Galway University Hospitals, Ireland

Correspondence to Shaun T O’Keeffe, Galway University Hospitals, Unit 4, Galway, Ireland; sokanc@iol.ie

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 24 September 2010
Published Online First 30 October 2010

REFERENCES

Table 1 Univariate analyses of association between independent variables and readmission

<table>
<thead>
<tr>
<th>Variable</th>
<th>Day 14</th>
<th>Week 6</th>
<th>Month 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admissions in previous year</td>
<td>p<0.02</td>
<td>p<0.014</td>
<td>p<0.027</td>
</tr>
<tr>
<td>(OR 2.3, CI 1.1 to 4.7)</td>
<td>(OR 2.0, CI 1.2 to 3.5)</td>
<td>(OR 1.8, CI 1.0 to 3.0)</td>
<td></td>
</tr>
<tr>
<td>Long-term oxygen therapy</td>
<td>p<0.05</td>
<td>p<0.001</td>
<td>p<0.001</td>
</tr>
<tr>
<td>(OR 1.95, CI 0.9 to 3.8)</td>
<td>(OR 3.84, CI 2.2 to 6.7)</td>
<td>(OR 3.5, CI 1.9 to 6.3)</td>
<td></td>
</tr>
<tr>
<td>Portable oxygen</td>
<td>p=0.51</td>
<td>p=0.02</td>
<td>p<0.001</td>
</tr>
<tr>
<td>(OR 1.33, CI 0.6 to 2.9)</td>
<td>(OR 2.76, CI 1.5 to 5.1)</td>
<td>(OR 3.28, CI 1.7 to 6.3)</td>
<td></td>
</tr>
<tr>
<td>Home nebuliser</td>
<td>p=0.43</td>
<td>p=0.36</td>
<td>p=0.24</td>
</tr>
<tr>
<td>(OR 1.38, CI 0.6 to 3.1)</td>
<td>(OR 1.3, CI 0.71 to 2.5)</td>
<td>(OR 1.4, CI 0.8 to 2.7)</td>
<td></td>
</tr>
<tr>
<td>Oxygen saturation <92% on room air</td>
<td>p=0.28</td>
<td>p=0.005</td>
<td>p<0.02</td>
</tr>
<tr>
<td>(OR 1.51, CI 0.7 to 3.3)</td>
<td>(OR 2.17, CI 1.4 to 3.3)</td>
<td>(OR 1.7, CI 1.2 to 2.4)</td>
<td></td>
</tr>
<tr>
<td>Pack-year history ≥50</td>
<td>p=0.78</td>
<td>p<0.001</td>
<td>p=0.01</td>
</tr>
<tr>
<td>(OR 1.07, CI 0.35 to 3.3)</td>
<td>(OR 3.25, CI 1.5 to 6.9)</td>
<td>(OR 2.86, CI 1.3 to 6.2)</td>
<td></td>
</tr>
<tr>
<td>Borg scale ≥3</td>
<td>p=0.026</td>
<td>p<0.001</td>
<td>p<0.001</td>
</tr>
<tr>
<td>(OR 2.47, CI 1.2 to 5.1)</td>
<td>(OR 3.23, CI 1.7 to 6.0)</td>
<td>(OR 3.23, CI 1.7 to 6.1)</td>
<td></td>
</tr>
<tr>
<td>MMRC scale ≥3</td>
<td>p<0.02</td>
<td>p=0.01</td>
<td>p<0.01</td>
</tr>
<tr>
<td>(OR 2.56, CI 1.1 to 5.7)</td>
<td>(OR 2.1, CI 1.1 to 3.6)</td>
<td>(OR 2.6, CI 1.1 to 3.4)</td>
<td></td>
</tr>
<tr>
<td>Vaccination status</td>
<td>p=0.05</td>
<td>p<0.001</td>
<td>p<0.001</td>
</tr>
<tr>
<td>(pneumococcal and influenza)</td>
<td>(OR 1.2, CI 0.58 to 2.4)</td>
<td>(OR 3.25, CI 1.5 to 6.9)</td>
<td></td>
</tr>
</tbody>
</table>

Pack-year history, number of pack-years of cigarettes smoked per day < total number of years smoking; Borg scale refers to level of dyspnoea at enrolment; MMRC (modified Medical Research Council) scale ≥3 refers to level of dyspnoea at enrolment.
Risk disclosure prior to bronchoscopy

Stephen M Bianchi, Shironjit Saha and Paul Anderson

Thorax 2011 66: 357-358 originally published online October 30, 2010
doi: 10.1136/thx.2010.150391

Updated information and services can be found at:
http://thorax.bmj.com/content/66/4/357.2

These include:

References
This article cites 2 articles, 2 of which you can access for free at:
http://thorax.bmj.com/content/66/4/357.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/