Article Text

Download PDFPDF

Origin of nitrite and nitrate in nasal and exhaled breath condensate and relation to nitric oxide formation
Free
  1. H Marteus1,
  2. D C Törnberg2,
  3. E Weitzberg2,
  4. U Schedin3,
  5. K Alving1
  1. 1Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
  2. 2Department of Surgical Sciences, Karolinska Institutet, Stockholm, Sweden
  3. 3Division of Anaesthesia and Intensive Care, Danderyd Hospital, Stockholm, Sweden
  1. Correspondence to:
    Professor K Alving
    Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; kjell.alvingfyfa.ki.se

Abstract

Background: Raised concentrations of nitrate and nitrite have been found in exhaled breath condensate (EBC) in airway disease, and it has been postulated that this reflects increased nitric oxide (NO) metabolism. However, the chemical and anatomical origin of nitrate and nitrite in the airways has not yet been sufficiently studied.

Methods: The fraction of exhaled NO at an exhalation flow rate of 50 ml/s (FENO) and nitrite and nitrate in EBC, nasal condensate, and saliva were measured in 17 tracheostomised and 15 non-tracheostomised subjects, all of whom were non-smokers without respiratory disease. Tracheal and oral samples were taken from the tracheostomised subjects and nasal (during velum closure) and oral samples from the non-tracheostomised subjects. Measurements were performed before and after sodium nitrate ingestion (10 mg/kg) and use of antibacterial mouthwash (chlorhexidine 0.2%).

Results: In tracheostomised subjects oral FENO increased by 90% (p<0.01) while tracheal FENO was not affected 60 minutes after nitrate ingestion. Oral EBC nitrite levels were increased 23-fold at 60 minutes (p<0.001) whereas the nitrite levels in tracheal EBC showed only a minor increase (fourfold, p<0.05). Nitrate was increased the same amount in oral and tracheal EBC at 60 minutes (2.5-fold, p<0.05). In non-tracheostomised subjects oral FENO and EBC nitrite increased after nitrate ingestion and after chlorhexidine mouthwash they approached baseline levels again (p<0.001). Nasal NO, nitrate, and nitrite were not affected by nitrate intake or mouthwash. At baseline, mouthwash with deionised water did not affect nitrite in oral EBC or saliva, whereas significant reductions were seen after antibacterial mouthwash (p<0.05 and p<0.001, respectively).

Conclusions: Besides the salivary glands, plasma nitrate is taken up by the lower airways but not the nasal airways. Nitrate levels in EBC are thus influenced by dietary intake. Nitrate is reduced to nitrite by bacterial activity which takes place primarily in the oropharyngeal tract of healthy subjects. Only oropharyngeal nitrite seems to contribute to exhaled NO in non-inflamed airways, and there is also a substantial contribution of nitrite from the oropharyngeal tract during standard collection of EBC.

  • EBC, exhaled breath condensate
  • FENO, fraction of expired nitric oxide
  • CF, cystic fibrosis
  • PCD, primary ciliary dyskinesia
  • NO, nitric oxide
  • dH2O, deionised water
  • exhaled nitric oxide
  • exhaled breath condensate
  • nitrite
  • nitrate

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • This study was supported by the Swedish Research Council, Medicine (no 10354), the Swedish Heart-Lung Foundation, the Swedish Asthma and Allergy Association’s Research Foundation, the Swedish Knowledge Foundation, Karolinska Institutet and Aerocrine AB.

  • Competing interests: HM, DCT and US declare no competing interests. KA and EW are co-founders and shareholders of Aerocrine AB. KA has received research funding from Aerocrine. EW is a member of the board of Aerocrine.