Article Text

Download PDFPDF

Comparison of airway reactivity induced by histamine, methacholine, and isocapnic hyperventilation in normal and asthmatic subjects.
  1. A T Aquilina

    Abstract

    In an investigation of a rapid screening test for airway reactivity using isocapnic hyperventilation with room air and cold air the results of this test were compared with the airway response to histamine and methacholine challenge. Twelve non-atopic, non-smoking normal subjects and 11 subjects with stable asthma who had an FEV1 above 74% of the predicted value were studied. In the normal subjects isocapnic hyperventilation with room air (75 l/min; 22 degrees C (SEM 0.2 degrees); 10 mg H2O/l air) and isocapnic hyperventilation with cold air (77 l/min; -10 degrees C (0.9 degrees); 2.4 mg H2O/l air) produced no significant change in FEV1. In the asthmatic subjects, hyperventilation with room air (71 l/min; 22 degrees C (0.8 degrees); 10 mg H2O/l air) caused a mean fall in FEV1 of 11.7%; cold air hyperventilation (70 l/min; -10 degrees C (0.9 degrees); 2.4 mg H2O/l air) caused a mean fall in FEV1 of 20.4%. Cold air hyperventilation produced greater separation between normal and asthmatic subjects than room air. The provocative concentration of histamine required to reduce the FEV1 by 20% (PC20) correlated closely with the PC20 for methacholine (r = 0.95; p less than 0.001). Both tests separated normal from asthmatic subjects. PC20 for both histamine and methacholine correlated with the fall in FEV1 after cold air hyperventilation (r = 0.93, p less than 0.001; r = 0.87, p less than 0.001 respectively). We conclude that the results of a rapid screening test based on hyperventilation with cold air correlate well with a standard pharmacological challenge.

    Statistics from Altmetric.com

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.